1
|
Li R, Li J, Lu X, Meng F, Chen J. Ultrasensitive Electrochemical Biosensor for Rapid Screening of Chemicals with Estrogenic Effect. BIOSENSORS 2024; 14:436. [PMID: 39329811 PMCID: PMC11430529 DOI: 10.3390/bios14090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Estrogenic chemicals are widely distributed and structurally diverse. They primarily disrupt estrogen-related metabolism in animals or humans by mimicking the agonistic receptor effects of natural estrogens, thereby influencing the transcription of estrogen receptors to regulate their quantity and sensitivity. This disruption of estrogen-related metabolism can lead to estrogen-related effects, posing risks to biological health, emphasizing the urgent need for simple and effective methods to screen compounds with estrogenic effects. Herein, a new electrochemical biological effect biosensor based on human estrogen receptor α (hERα) is developed, which uses hERα as the biorecognition element and employs the electroactive horseradish peroxidase (HRP) labeled 17β-estradiol (E2) multifunctional conjugate HRP-E2 as the signal-boosting element and ligand competition agent. Based on the specific ligand-receptor interaction principle between the target and nuclear receptor, by allowing the test compound to compete with HRP-E2 conjugate for binding to hERα and testing the electrocatalytic signal of the conjugate that fails to bind to the hERα estrogen receptor, rapid screening and quantitative detection of chemical substances with estrogenic effect have been achieved. The biosensor shows a wide linear range of 40 pM to 40 nM with a detection limit of 17 pM (S/N = 3) for E2, and the detection limit is 2 orders of magnitude better than that of the previously reported sensors. The biosensor based on ligand-receptor binding can not only quantitatively analyze the typical estrogen E2, but also evaluate the relative estrogen effect strength of other estrogen compounds, which has good stability and selectivity. This electrochemical sensing platform displays its promising potential for rapid screening and quantitative detection of chemicals with estrogenic effects.
Collapse
Affiliation(s)
- Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jin Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China;
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Fanli Meng
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
| |
Collapse
|
2
|
Wu Y, Luo D, Yi J, Li R, Yang D, Pang P, Wang H, Yang W, Zhang Y. A self-powered electrochemical aptasensor for the detection of 17β-estradiol based on carbon nanocages/gold nanoparticles and DNA bioconjugate mediated biofuel cells. Analyst 2024; 149:2621-2628. [PMID: 38546096 DOI: 10.1039/d4an00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
17β-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.
Collapse
Affiliation(s)
- Yongju Wu
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Luo
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Jinfei Yi
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Rong Li
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Yang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Pengfei Pang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Hongbin Wang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia
| | - Yanli Zhang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| |
Collapse
|
3
|
Mughal ZUN, Aylaz G, Shaikh H, Memon S, Andac M. Development of a molecularly imprinted polymer on silanized graphene oxide for the detection of 17-estradiol in wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11006. [PMID: 38444299 DOI: 10.1002/wer.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
This research article demonstrates the synthesis, characterization, and electrochemical evaluation of a molecularly imprinted polymer (MIP) on the surface of silanized graphene oxide (silanized GO), which is nanostructured and used to quantify 17-estradiol (E2) in wastewater. As characterization methods, X-ray diffraction (XRD), Raman spectroscopy, dynamic scattering light (DSL), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were utilized to examine the synthesized GO, silanized GO, MIP-GO composite, and non-imprinted polymer (NIP)-GO (NIP-GO) composite. FTIR results confirmed the successful synthesis of GO composites. Raman study confirmed the synthesis of monolayer silanized GO, MIP-GO composite, and NIP-GO composite. Surface morphology revealed that after polymerization, the surface of silanized GO sheet-like morphology is covered with nanoparticles. Adsorption kinetics studies revealed that adsorption follows the pseudo-second-order kinetics. Further, we studied the performance of a MIP-GO-based sensor by optimizing the effects of pH, scan rate, and incubation period. The linear calibration was achieved between the oxidation peak current and E2 concentration from 0.1 to 0.81 ppm, with a detection limit of 0.037 ppm. The selectivity of the MIP-GO composite was also checked by using other estrogens, and it was found that E2 is 3.3, 0.5, and 1.4 times more selective than equilin, estriol, and estrone, respectively. The composite was successfully applied to the wastewater samples for the detection of E2, and a good percentage of recoveries were achieved. It suggests that the reported composite can be applied to real samples. PRACTITIONER POINTS: An innovative electrochemical sensor was developed for selective detection of 17-estradiol through molecularly imprinted polymer fabricated on the surface of silanized GO (MIP-GO composite). The developed method was comprehensively validated and found to be linear in the range of 0.1 to 0.8 ppm of 17-estradiol, with 0.037 ppm of limit of detection and 0.1 ppm of limit of quantification, respectively. The developed MIP-GO-composite-based electrochemical sensor was found 3.3, 0.5, and 1.4 times more selective for 17-estradiol than equiline, estriol, and estrone, respectively. The applicability of a developed sensor was also checked on wastewater samples, and a good percent recovery was obtained.
Collapse
Affiliation(s)
- Zaib Un Nisa Mughal
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Gulgun Aylaz
- Nanotechnology Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Shahabuddin Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Muge Andac
- Faculty of Engineering, Environmental Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Jijana AN, Feleni U, Ndangili PM, Bilibana M, Ajayi RF, Iwuoha EI. Quantum Dot-Sensitised Estrogen Receptor-α-Based Biosensor for 17β-Estradiol. BIOSENSORS 2023; 13:242. [PMID: 36832008 PMCID: PMC9954354 DOI: 10.3390/bios13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
17β-estradiol (E2) is an important natural female hormone that is also classified as an estrogenic endocrine-disrupting compound (e-EDC). It is, however, known to cause more damaging health effects compared to other e-EDCs. Environmental water systems are commonly contaminated with E2 that originates from domestic effluents. The determination of the level of E2 is thus very crucial in both wastewater treatment and in the aspect of environmental pollution management. In this work, an inherent and strong affinity of the estrogen receptor-α (ER-α) for E2 was used as a basis for the development of a biosensor that was highly selective towards E2 determination. A gold disk electrode (AuE) was functionalised with a 3-mercaptopropionic acid-capped tin selenide (SnSe-3MPA) quantum dot to produce a SnSe-3MPA/AuE electroactive sensor platform. The ER-α-based biosensor (ER-α/SnSe-3MPA/AuE) for E2 was produced by the amide chemistry of carboxyl functional groups of SnSe-3MPA quantum dots and the primary amines of ER-α. The ER-α/SnSe-3MPA/AuE receptor-based biosensor exhibited a formal potential (E0') value of 217 ± 12 mV, assigned as the redox potential for monitoring the E2 response using square-wave voltammetry (SWV). The response parameters of the receptor-based biosensor for E2 include a dynamic linear range (DLR) value of 1.0-8.0 nM (R2 = 0.99), a limit of detection (LOD) value of 1.69 nM (S/N = 3), and a sensitivity of 0.04 µA/nM. The biosensor exhibited high selectivity for E2 and good recoveries for E2 determination in milk samples.
Collapse
Affiliation(s)
- Abongile N. Jijana
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, P/Bag X6, Florida, Roodepoort, Johannesburg 1710, South Africa
| | - Peter M. Ndangili
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Mawethu Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Rachel F. Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Emmanuel I. Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
6
|
Zhang T, Du X, Zhang Z. Advances in electrochemical sensors based on nanomaterials for the detection of lipid hormone. Front Bioeng Biotechnol 2022; 10:993015. [PMID: 36159660 PMCID: PMC9500180 DOI: 10.3389/fbioe.2022.993015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid hormone is produced by highly differentiated endocrine cells and directly secretes into the blood circulation or tissue fluid to act as information transmission. It influences the physiological functions of the human body by controlling the metabolic processes of multiple tissue cells. Monitoring the levels of lipid hormone is of great importance for maintaining human health. The electrochemical sensor is considered as an ideal tool to detect lipid hormone owing to its advantages such as quick response, convenience and low economic costs. In recent 3 years, researchers have developed various electrochemical sensors for the detection of lipid hormone to improve their sensitivity or selectivity. The use of nanomaterials (such as carbon nanomaterials, precious metal and polymer) is a key research object and a breakthrough for improving the sensing performance of electrochemical sensors for detection of lipid hormone. This paper reviews and discusses the basic principle, nanomaterials, actuality and future development trend of electrochemical sensors for the detection of lipid hormone in the past 3 years.
Collapse
Affiliation(s)
| | - Xin Du
- *Correspondence: Xin Du, ; Zhenguo Zhang,
| | | |
Collapse
|