1
|
Stogov MV, Emanov AA, Kuznetsov VP, Komarova EG, Gorbach EN, Kireeva EA, Tolkacheva TV, Sharkeev YP. The effect of zinc-containing calcium phosphate coating on the osseointegration of transcutaneous implants for limb prosthetics. GENIJ ORTOPEDII 2024; 30:677-686. [DOI: 10.18019/1028-4427-2024-30-5-677-686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Introduction Increasing the integration of transcutaneous implants is an important goal for their application in clinical practice.The purpose of the work was to evaluate the osseointegration of transcutaneous titanium implants with calcium-phosphate coating containing zinc ions.Materials and methods The studies were performed on 12 male rabbits, who underwent implantation of an original implant into the tibial stump. After implantation, a compression device was installed on the bone, maintaining a load of 3.5 N for 5 weeks. Duration of observation was 26 weeks. The animals were divided into two groups: a control group (n = 6) with an implant without coating and an experimental group (n = 6) with a zinc-substituted calcium-phosphate coated implant.Results The implant fell out in one case in animals from the control group; no cases of implant loss were noted in the experimental group. It was revealed that the weight concentration of Ca and P in all zones of the bone-implant block of the animals in the experimental group significantly exceeded similar indicators in the control group. In the control group, long-term persistence of high levels of C-reactive protein was noted, which was not observed in the experimental group.Discussion This series of studies has shown that an implant with a zinc-modified calcium-phosphate coating exhibited a more effective integration, in contrast to an uncoated product. The absence of serious adverse reactions to the tested products indicates acceptable tolerability and safety of its use.Conclusion The implants with a zinc-modified calcium-phosphate coating showed signs of more effective osseointegration compared to the product without additional coating.
Collapse
Affiliation(s)
- M. V. Stogov
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - A. A. Emanov
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - V. P. Kuznetsov
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics; Ural Federal University named after. the first President of Russia B.N. Yeltsin
| | - E. G. Komarova
- Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences
| | - E. N. Gorbach
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - E. A. Kireeva
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - T. V. Tolkacheva
- Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences
| | - Yu. P. Sharkeev
- Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
2
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
3
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
4
|
Ren X, Tsuji H, Uchino T, Kono I, Isoshima T, Okamoto A, Nagaoka N, Ozaki T, Matsukawa A, Miyatake H, Ito Y. An osteoinductive surface by adhesive bone morphogenetic protein-2 prepared using the bioorthogonal approach for tight binding of titanium with bone. J Mater Chem B 2024; 12:3006-3014. [PMID: 38451210 DOI: 10.1039/d3tb02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.
Collapse
Affiliation(s)
- Xueli Ren
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hironori Tsuji
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Takahiko Uchino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Izumi Kono
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
5
|
Sun X, Wu C, Tian X, Wang P, Guo J, Shao Z, Wei Q. Activation of Dopamine Receptor D1 and Downstream Cellular Functions by Polydopamine. ACS Biomater Sci Eng 2024; 10:420-428. [PMID: 38142403 DOI: 10.1021/acsbiomaterials.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Polydopamine is a remarkable molecule that has gained considerable attention for its role in material surface modification, leading to an abundance of research in the biomaterial domain. While its widespread use is well documented, the molecule's potential cellular interactions have been less explored. In particular, dopamine serves as a neurotransmitter and a hormone that interacts with dopamine receptors in cells. Our study sheds light on the previously unexamined interaction between polydopamine and dopamine receptor D1 (DRD1). We discovered that polydopamine, along with its derivatives, such as levodopa and catechol, can activate DRD1─a function previously attributed solely to dopamine. Moreover, we found that polydopamine has the ability to influence cell behavior through the cAMP/PKA pathway, thereby affecting RhoA activity and stress fiber formation. These observations invite further consideration regarding the biological safety of polydopamine in biomedical contexts and also open avenues for new research directions in designing bioactive functional materials.
Collapse
Affiliation(s)
- Xin Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Junling Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, University of British, Columbia Vancouver, BC V6T 1Z4, Canada
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Zhang H, Li X, Qu Z, Zhang W, Wang Q, Cao D, Wang Y, Wang X, Wang Y, Yu L, Ding J. Effects of serum proteins on corrosion rates and product bioabsorbability of biodegradable metals. Regen Biomater 2023; 11:rbad112. [PMID: 38173765 PMCID: PMC10761199 DOI: 10.1093/rb/rbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products. However, the removal of the precipitated products has been unclear and even largely ignored in publications. Herein, we find that albumin, an abundant macromolecule in serum, enhances the solubility of corrosion products of iron in blood mimetic Hank's solution significantly. This is universal for other main biodegradable metals such as magnesium, zinc and polyester-coated iron. Albumin also influences corrosion rates in diverse trends in Hank's solution and normal saline. Based on quantitative study theoretically and experimentally, both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism, and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface. This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine. The improved Hank's solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices, where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin, resulting in the physiological concentration of free calcium ions.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Mokhtar SMA, Derrick-Roberts ALK, Evans DR, Strudwick XL. Cell Viability Assessment of PEDOT Conducting Polymer-Coated Microneedles for Skin Sampling. ACS APPLIED BIO MATERIALS 2023; 6:4662-4671. [PMID: 37902811 DOI: 10.1021/acsabm.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity. Though CPs are reported to work safely in the body, their biocompatibility in the skin has been insufficiently investigated. Furthermore, during electrical biasing of CPs, they undergo reduction or oxidation, which in practical terms leads to release/exchange of ions, which could pose biological risks. This work investigates the viability and proliferation of skin cells upon exposure to an electrochemically biased MN pair comprising two differently doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) polymers that have been designed for skin sampling use. The impact of biasing on human keratinocytes and dermal fibroblasts was determined at different initial cell seeding densities and incubation periods. Indirect testing was employed, whereby the culture media was first exposed to PEDOTs prior to the addition of this extract to cells. In all conditions, both unbiased and biased PEDOT extracts showed no cytotoxicity, but the viability and proliferation of cells cultured at a low cell seeding density were lower than those of the control after 48 h of incubation.
Collapse
Affiliation(s)
- Siti Musliha Ajmal Mokhtar
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- College of Engineering, Universiti Teknologi MARA, Johor Branch, Pasir Gudang Campus, Masai, Johor 81750, Malaysia
| | | | - Drew R Evans
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
8
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Chen Z, Chen Y, Wang Y, Deng J, Wang X, Wang Q, Liu Y, Ding J, Yu L. Polyetheretherketone implants with hierarchical porous structure for boosted osseointegration. Biomater Res 2023; 27:61. [PMID: 37370127 DOI: 10.1186/s40824-023-00407-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Good osseointegration is the key to the long-term stability of bone implants. Thermoplastic polyetheretherketone (PEEK) has been widely used in orthopedics; however, its inherent biological inertia causes fibrous tissue to wrap its surface, which leads to poor osseointegration and thus greatly limits its clinical applications. METHODS Herein, we developed a facile yet effective surface modification strategy. A commonly used sulfonation coupled with "cold pressing" treatment in the presence of porogenic agent formed a three-dimensional hierarchical porous structure on PEEK surface. Subsequently, the effects of porous surface on the in vitro adhesion, proliferation and differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) were evaluated. Finally, the osteoinduction and osseointegration of surface-porous PEEK implant were examined in the rat distal femoral defect model. RESULTS In vitro results showed that the surface modification did not significantly affect the mechanical performance and cytocompatibility of PEEK substance, and the porous structure on the modified PEEK substrate provided space for cellular ingrowth and enhanced osteogenic differentiation and mineralization of BMSCs. In vivo tests demonstrated that the surface-porous PEEK implant could effectively promote new bone formation and had higher bone-implant contact rate, thereby achieving good bone integration with the surrounding host bone. In addition, this modification technique was also successfully demonstrated on a medical PEEK interbody fusion cage. CONCLUSION The present study indicates that topological morphology plays a pivotal role in determining implant osseointegration and this facile and effective modification strategy developed by us is expected to achieve practical applications quickly.
Collapse
Affiliation(s)
- Zhiyong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Yu Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - JiaJia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Luo JP, Lv KP, Tang JC, Wu ZZ, Liu YL, Luo JT, Lai YX, Yan M. Electropolishing influence on biocompatibility of additively manufactured Ti-Nb-Ta-Zr: in vivo and in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:25. [PMID: 37179514 PMCID: PMC10183419 DOI: 10.1007/s10856-023-06728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Balling defect of the additively manufactured titanium lattice implants easily leads to muscle tissue rejection, which might cause failure of implantation. Electropolishing is widely used in surface polishing of complex components and has potential to deal with the balling defect. However, a clad layer could be formed on the surface of titanium alloy after electropolishing, which may affect the biocompatibility of the metal implants. To manufacture lattice structured β-type Ti-Ni-Ta-Zr (TNTZ) for bio-medical applications, it is necessary to investigate the impact of electropolishing on material biocompatibility. In this study, animal experiments were conducted to investigate the in vivo biocompatibility of the as-printed TNTZ alloy with or without electropolishing; and proteomics technology was used to elaborate the results. The following conclusions were drawn: (a) a 30% oxalic acid electropolishing treatment was effective in solving balling defects, and ~21 nm amorphous clad layer would be formed on the surface of the material after polishing; (b) the electropolished TNTZ suggested decreased cell cytotoxicity and improved blood biocompatibility as compared to as-printed TNTZ; (c) the amorphous clad layer could make a barrier to prevent Ta and Zr ions from penetrating into the muscle tissue, and could form a good tissue regeneration at the implantation site during 4 weeks, indicating that the electropolished TNTZ has the potential as implants; and (d) the cells attached to the electropolished TNTZ showed higher antioxidant capacity but less proliferation than attached to as-printed TNTZ.
Collapse
Affiliation(s)
- J P Luo
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Distinta Interfacial Technology Co. Ltd, Shenzhen, 518106, China
| | - K P Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - J C Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Z Z Wu
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Y L Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - J T Luo
- School of Physics and Opto-electronic Engineering, Shenzhen university, Shenzhen, 518060, China
| | - Y X Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - M Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Jiaxing Research Institute, Southern University of Science and Technology, Jiaxing, 314001, China.
| |
Collapse
|
11
|
Zhou M, Wang J, Wang J, Yu J, Huang S, Wang T, Wei H. Construction of a Localized and Long-Acting CCN2 Delivery System on Percutaneous Ti Implant Surfaces for Enhanced Soft-Tissue Integration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22864-22875. [PMID: 37133335 DOI: 10.1021/acsami.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soft-tissue integration (STI) plays an essential role in the long-term success of percutaneous Ti implants since it acts as a biological barrier that protects the soft and hard tissue around implants. Surface modification of Ti implants with drug-release properties to achieve soft-tissue regeneration has been proven to be effective in STI. However, the short-acting effect caused by the uncontrolled drug release of the topical delivery system limits long-term STI enhancement. Herein, a long-acting protein delivery system for Ti implants that involved micro-arc oxidation of Ti surfaces (MAO-Ti) and localized immobilization of cellular communication network factor 2 (CCN2) bearing mesoporous silica nanoparticles (MSNs) on MAO-Ti was prepared, namely, CCN2@MSNs-Ti. The CCN2 release study of CCN2@MSNs-Ti demonstrated a sustained-release profile for 21 days, which was able to maintain long-term stable STI. In addition, in vitro cell behavior evaluation results indicated that CCN2@MSNs-Ti could promote the STI-related biological response of human dermal fibroblasts via the FAK-MAPK pathway. More importantly, the system could effectively enhance STI after 4 weeks and proinflammatory factors in the soft tissue decreased significantly in a rat model of implantation. These results denote that CCN2@MSNs-Ti showed an appealing application prospect for enhanced STI around transcutaneous Ti implants, which would ultimately result in an increased success rate of percutaneous Ti implants.
Collapse
Affiliation(s)
- Minghao Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jia Wang
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Shitou Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710129, Shaanxi, P. R. China
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| |
Collapse
|
12
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
13
|
Wang Q, Liu Q, Gao J, He J, Zhang H, Ding J. Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6142-6155. [PMID: 36637977 DOI: 10.1021/acsami.2c19742] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| |
Collapse
|
14
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Zhang H, Zhang W, Qiu H, Zhang G, Li X, Qi H, Guo J, Qian J, Shi X, Gao X, Shi D, Zhang D, Gao R, Ding J. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions. Adv Healthc Mater 2022; 11:e2201740. [PMID: 36057108 DOI: 10.1002/adhm.202201740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
The new-generation coronary stents are expected to be biodegradable, and then the biocompatibility along with biodegradation becomes more challenging. It is a critical issue to choose appropriate biomimetic conditions to evaluate biocompatibility. Compared with other candidates for biodegradable stents, iron-based materials are of high mechanical strength, yet have raised more concerns about biodegradability and biocompatibility. Herein, a metal-polymer composite strategy is applied to accelerate the degradation of iron-based stents in vitro and in a porcine model. Furthermore, it is found that serum, the main environment of vascular stents, ensured the safety of iron corrosion through its antioxidants. This work highlights the importance of serum, particularly albumin, for an in vitro condition mimicking blood-related physiological condition, when reactive oxygen species, inflammatory response, and neointimal hyperplasia are concerned. The resultant metal-polymer composite stent is implanted into a patient in clinical research via interventional treatment, and the follow-up confirms its safety, efficacy, and appropriate biodegradability.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Qian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Wang Z, Wu G, Yang Z, Li X, Feng Z, Zhao Y. Chitosan/Hyaluronic Acid/MicroRNA-21 Nanoparticle-Coated Smooth Titanium Surfaces Promote the Functionality of Human Gingival Fibroblasts. Int J Nanomedicine 2022; 17:3793-3807. [PMID: 36072958 PMCID: PMC9444039 DOI: 10.2147/ijn.s375180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
- Correspondence: Zhongshan Wang; Yimin Zhao, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China, Tel/Fax +86-29-84776128, Email ;
| | - Guangsheng Wu
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, People’s Republic of China
| | - Zhujun Yang
- Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
18
|
He J, Shen R, Liu Q, Zheng S, Wang X, Gao J, Wang Q, Huang J, Ding J. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37436-37446. [PMID: 35943249 DOI: 10.1021/acsami.2c10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai 200434, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
19
|
Wang G, Gao C, Xiao B, Zhang J, Jiang X, Wang Q, Guo J, Zhang D, Liu J, Xie Y, Shu C, Ding J. Research and clinical translation of trilayer stent-graft of expanded polytetrafluoroethylene for interventional treatment of aortic dissection. Regen Biomater 2022; 9:rbac049. [PMID: 35958517 PMCID: PMC9362767 DOI: 10.1093/rb/rbac049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The aortic dissection (AD) is a life-threatening disease. The transcatheter endovascular aortic repair (EVAR) affords a minimally invasive technique to save lives of these critical patients, and an appropriate stent-graft gets to be the key medical device during an EVAR procedure. Herein, we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease. The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene (ePTFE) membranes. Each of inner and outer surfaces of the stent-graft was covered by an ePTFE membrane, and the two membranes were then sintered together. The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro. Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability. The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo. In 9 canine experiments, the blood vessels of the animals implanted with the stent-grafts were of good patency, and there were no thrombus and obvious stenosis by angiography after implantation for 6 months. Furthermore, all of the 9 clinical cases experienced successful implantation using the stent-graft and its post-release delivery system, and the one-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Benhao Xiao
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jie Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Xunyuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Yuehui Xie
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Chang Shu
- Department of Vascular Surgery, the Second Xiangya Hospital of Central South University , Changsha, 410011, China
- State Key Laboratory of Cardiovascular Diseases, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, 100037, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| |
Collapse
|
20
|
Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloys. MICROMACHINES 2022; 13:mi13030430. [PMID: 35334722 PMCID: PMC8953245 DOI: 10.3390/mi13030430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Metals that come into contact with the body can cause reactions in the body, so biomaterials must be tested to avoid side effects. Mo, Zr, and Ta are non-toxic elements; alloyed with titanium, they have very good biocompatibility properties and mechanical properties. The paper aims to study an original Ti20Mo7ZrxTa system (5, 10, 15 wt %) from a mechanical and in vitro biocompatibility point of view. Alloys were examined by optical microstructure, tensile strength, fractographic analysis, and in vitro assay. The obtained results indicate very good mechanical and biological properties, recommending them for future orthopedic medical applications.
Collapse
|
21
|
Yu X, Li G, Zheng Y, Gao J, Fu Y, Wang Q, Huang L, Pan X, Ding J. “Invisible” orthodontics by polymeric “clear” aligners molded on 3D-printed personalized dental models. Regen Biomater 2022; 9:rbac007. [PMID: 35414958 PMCID: PMC8992363 DOI: 10.1093/rb/rbac007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
The malalignment of teeth is treated classically by metal braces with alloy wires, which has an unfavorable influence on the patients appearance during the treatment. With the development of digitization, computer simulation and three-dimensional (3D) printing technology, herein, a modern treatment was tried using clear polymeric aligners, which were fabricated by molding polyurethane films via thermoforming on the 3D-printed personalized dental models. The key parameters of photocurable 3D printing of dental models and the mechanical properties of the clear aligner film material were examined. The precision of a 3D-printed dental model mainly relied on characteristics of photocurable resin, the resolution of light source and the exposure condition, which determined the eventual shape of the molded clear aligner and thus the orthodontic treatment efficacy. The biocompatibility of the polyurethane film material was confirmed through cytotoxicity and hemolysis tests in vitro. Following a series of 3D-printed personalized dental models and finite element analysis to predict and plan the fabrication and orthodontic processes, corresponding clear aligners were fabricated and applied in animal experiments, which proved the efficacy and biocompatibility in vivo. Clinical treatments of 120 orthodontic cases were finally carried out with success, which highlights the advantage of the clear aligners as an esthetic, compatible and efficient appliance. ![]()
Collapse
Affiliation(s)
- Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Guanghui Li
- Department of Orthodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yikan Zheng
- Angelalign Research Institute, Shanghai, 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lei Huang
- Angelalign Research Institute, Shanghai, 200438, China
| | - Xiaogang Pan
- Department of Orthodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
22
|
Ding J, Tang J, Cai C, Cao D, Rao W, Guo W, Yu L. Coordination Strategy to Achieve Instant Dissolution of a Biomedical Polymer in Water via Manual Shaking. Biomater Sci 2022; 10:4561-4575. [DOI: 10.1039/d2bm00814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic polymers with condensed long chains are kinetically slow to be dissolved in their solvents, particularly in water, which has significantly hindered their potential applications as soon as an instant...
Collapse
|
23
|
He Y, Leng J, Li K, Xu K, Lin C, Yuan Z, Zhang R, Wang D, Tao B, Huang TJ, Cai K. A multifunctional hydrogel coating to direct fibroblast activation and infected wound healing via simultaneously controllable photobiomodulation and photodynamic therapies. Biomaterials 2021; 278:121164. [PMID: 34601196 DOI: 10.1016/j.biomaterials.2021.121164] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Bacterial infection treatment and subsequent tissue rebuilding are the main tasks of biomaterial research. To endow implants with antibacterial activity and biological functions, the material systems are usually very complicated and ineffective. Recently, the concept of photobiomodulation (PBM), or low-level laser therapy (LLLT), has attracted increasing attention in tissue repair applications but still has not obtained wide acceptance. Because of the same laser resource, PBM could simultaneously work with 660 nm laser triggered photodynamic therapy (PDT), which will significantly simplify the material system and achieve the multiple functions of antibacterial activity and biological modulation effects. Herein, we attempt to validate the effectiveness of PBM and combine PBM with a PDT-based material system. A catechol motif-modified methacrylated gelatin containing photosensitizer Chlorin e6-loaded mesoporous polydopamine nanoparticles was fabricated (GelMAc/MPDA@Ce6). This hydrogel could be tightly adhered to titanium surfaces to serve as surface coating materials or directly used as dressings. Because of the 660 nm laser-triggered ROS generation property of Ce6, GelMAc/MPDA@Ce6 exhibited a remarkable and rapid antibacterial activity when the laser power was 1 W cm-2. After bacterial elimination, when the power was adjusted to 100 mW cm-2, daily irradiation brought an excellent PBM effect: the fibroblast activation was realized to accelerate wound repair. According to our in vitro and in vivo results, the fabricated hydrogel coating possessed both antibacterial activity and fibroblast activation ability only by adjusting the power of laser irradiation, which will greatly strengthen the confidence of using PBM in broader fields and give a good example to combine PBM with traditional biomaterial design.
Collapse
Affiliation(s)
- Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jin Leng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhang Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Danyang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|