1
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Aljieli M, Rivière C, Lantier L, Moiré N, Lakhrif Z, Boussemart AF, Cnudde T, Lajoie L, Aubrey N, Ahmed EM, Dimier-Poisson I, Di-Tommaso A, Mévélec MN. Specific Cell Targeting by Toxoplasma gondii Displaying Functional Single-Chain Variable Fragment as a Novel Strategy; A Proof of Principle. Cells 2024; 13:975. [PMID: 38891106 PMCID: PMC11172386 DOI: 10.3390/cells13110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Toxoplasma gondii holds significant therapeutic potential; however, its nonspecific invasiveness results in off-target effects. The purpose of this study is to evaluate whether T. gondii specificity can be improved by surface display of scFv directed against dendritic cells' endocytic receptor, DEC205, and immune checkpoint PD-L1. Anti-DEC205 scFv was anchored to the T. gondii surface either directly via glycosylphosphatidylinositol (GPI) or by fusion with the SAG1 protein. Both constructs were successfully expressed, but the binding results suggested that the anti-DEC-SAG1 scFv had more reliable functionality towards recombinant DEC protein and DEC205-expressing MutuDC cells. Two anti-PD-L1 scFv constructs were developed that differed in the localization of the HA tag. Both constructs were adequately expressed, but the localization of the HA tag determined the functionality by binding to PD-L1 protein. Co-incubation of T. gondii displaying anti-PD-L1 scFv with tumor cells expressing/displaying different levels of PD-L1 showed strong binding depending on the level of available biomarker. Neutralization assays confirmed that binding was due to the specific interaction between anti-PD-L1 scFv and its ligand. A mixed-cell assay showed that T. gondii expressing anti-PD-L1 scFv predominately targets the PD-L1-positive cells, with negligible off-target binding. The recombinant RH-PD-L1-C strain showed increased killing ability on PD-L1+ tumor cell lines compared to the parental strain. Moreover, a co-culture assay of target tumor cells and effector CD8+ T cells showed that our model could inhibit PD1/PD-L1 interaction and potentiate T-cell immune response. These findings highlight surface display of antibody fragments as a promising strategy of targeting replicative T. gondii strains while minimizing nonspecific binding.
Collapse
Affiliation(s)
- Muna Aljieli
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
- Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Clément Rivière
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Louis Lantier
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Nathalie Moiré
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Zineb Lakhrif
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Anne-France Boussemart
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Thomas Cnudde
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Laurie Lajoie
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Nicolas Aubrey
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Elhadi M. Ahmed
- Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Isabelle Dimier-Poisson
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Anne Di-Tommaso
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Marie-Noëlle Mévélec
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| |
Collapse
|
3
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Yuan X, Lu Y, Yang Y, Tian W, Fan D, Liu R, Lei X, Xia Y, Yang L, Yan S, Xiong D. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying a bispecific T cell engager against hepatocellular carcinoma. Oncoimmunology 2023; 12:2219544. [PMID: 37274296 PMCID: PMC10237050 DOI: 10.1080/2162402x.2023.2219544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023] Open
Abstract
We previously established a hepatocellular carcinoma (HCC) targeting system of conditionally replicative adenovirus (CRAd) delivered by human umbilical cord-derived mesenchymal stem cells (HUMSCs). However, this system needed to be developed further to enhance the antitumor effect and overcome the limitations caused by the alpha-fetoprotein (AFP) heterogeneity of HCC. In this study, a bispecific T cell engager (BiTE) targeting programmed death ligand 1 controlled by the human telomerase reverse transcriptase promoter was armed on the CRAd of the old system. It was demonstrated on orthotopic transplantation model mice that the new system had a better anti-tumor effect with no more damage to extrahepatic organs and less liver injury, and the infiltration and activation of T cells were significantly enhanced in the tumor tissues of the model mice treated with the new system. Importantly, we confirmed that the new system eliminated the AFP-negative cells on AFP heterogeneous tumor models efficiently. Conclusion: Compared with the old system, the new system provided a more effective and safer strategy against HCC.
Collapse
Affiliation(s)
- Xiangfei Yuan
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Yang Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuanyuan Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Dongmei Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ruoqi Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaomin Lei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yafei Xia
- Department of Pharmacy, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Shu Yan
- Department of Pharmacy, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
5
|
Johnson V, Vasu S, Kumar US, Kumar M. Surface-Engineered Extracellular Vesicles in Cancer Immunotherapy. Cancers (Basel) 2023; 15:2838. [PMID: 37345176 PMCID: PMC10216164 DOI: 10.3390/cancers15102838] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed bodies secreted by all cell types. EVs carry bioactive materials, such as proteins, lipids, metabolites, and nucleic acids, to communicate and elicit functional alterations and phenotypic changes in the counterpart stromal cells. In cancer, cells secrete EVs to shape a tumor-promoting niche. Tumor-secreted EVs mediate communications with immune cells that determine the fate of anti-tumor therapeutic effectiveness. Surface engineering of EVs has emerged as a promising tool for the modulation of tumor microenvironments for cancer immunotherapy. Modification of EVs' surface with various molecules, such as antibodies, peptides, and proteins, can enhance their targeting specificity, immunogenicity, biodistribution, and pharmacokinetics. The diverse approaches sought for engineering EV surfaces can be categorized as physical, chemical, and genetic engineering strategies. The choice of method depends on the specific application and desired outcome. Each has its advantages and disadvantages. This review lends a bird's-eye view of the recent progress in these approaches with respect to their rational implications in the immunomodulation of tumor microenvironments (TME) from pro-tumorigenic to anti-tumorigenic ones. The strategies for modulating TME using targeted EVs, their advantages, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | - Sunil Vasu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Uday S. Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | - Manoj Kumar
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomed Pharmacother 2023; 161:114436. [PMID: 36841031 DOI: 10.1016/j.biopha.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Immunotherapy has revolutionized treatment of cancer during the last decades. Oncolytic virotherapy has also emerged as a strategy to fight against cancer cells both via lysis of malignant cells and activating immune responses. Accepted as a logical strategy, combination of monoclonal antibodies particularly against the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) is introduced to improve clinical responses to immune checkpoint inhibitors (ICIs). Accordingly, Talimogene laherparepvec (T-VEC) has received approval for clinical use, while a number of oncolytic Adenoviruses (Ads) are being investigated in clinical trials of malignancies. Combination of oncolytic Ads with PD-1/PD-L1 inhibitors have shown potentials in promoting responses to ICIs, changing the tumor microenvironment, inducing long-term protection against tumor, and promoting survival among mice models of malignancies. Regarding the increasing importance of oncolytic Ads in combination therapy of cancers, in this review we decide to outline recent studies in this field.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
7
|
The Dilemma of HSV-1 Oncolytic Virus Delivery: The Method Choice and Hurdles. Int J Mol Sci 2023; 24:ijms24043681. [PMID: 36835091 PMCID: PMC9962028 DOI: 10.3390/ijms24043681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as effective gene therapy and immunotherapy drugs. As an important gene delivery platform, the integration of exogenous genes into OVs has become a novel path for the advancement of OV therapy, while the herpes simplex virus type 1 (HSV-1) is the most commonly used. However, the current mode of administration of HSV-1 oncolytic virus is mainly based on the tumor in situ injection, which limits the application of such OV drugs to a certain extent. Intravenous administration offers a solution to the systemic distribution of OV drugs but is ambiguous in terms of efficacy and safety. The main reason is the synergistic role of innate and adaptive immunity of the immune system in the response against the HSV-1 oncolytic virus, which is rapidly cleared by the body's immune system before it reaches the tumor, a process that is accompanied by side effects. This article reviews different administration methods of HSV-1 oncolytic virus in the process of tumor treatment, especially the research progress in intravenous administration. It also discusses immune constraints and solutions of intravenous administration with the intent to provide new insights into HSV-1 delivery for OV therapy.
Collapse
|
8
|
Ren Y, Miao JM, Wang YY, Fan Z, Kong XB, Yang L, Cheng G. Oncolytic viruses combined with immune checkpoint therapy for colorectal cancer is a promising treatment option. Front Immunol 2022; 13:961796. [PMID: 35911673 PMCID: PMC9334725 DOI: 10.3389/fimmu.2022.961796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy is one of the promising strategies in the treatment of oncology. Immune checkpoint inhibitors, as a type of immunotherapy, have no significant efficacy in the clinical treatment of patients with pMMR/MSS/MSI-L mCRC alone. Therefore, there is an urgent need to find combination therapies that can improve the response rate of immune checkpoint inhibitors. Oncolytic viruses are a new class of cancer drugs that, in addition to directly lysing tumor cells, can facilitate the action of immune checkpoint inhibitors by modulating the tumor microenvironment and transforming “cold” tumors into “hot” ones. The combination of oncolytic viruses and immune checkpoint inhibitors is currently being used in several primary and clinical studies to treat tumors with exciting results. The combination of genetically modified “armed” OV with ICIs is expected to be one of the treatment options for pMMR/MSS/MSI-L mCRC. In this paper, we will analyze the current status of oncolytic viruses and ICIs available for the treatment of CRC. The feasibility of OV in combination with ICI for CRC will be discussed in terms of the mechanism of action of OV in treating tumors.
Collapse
Affiliation(s)
- Yi Ren
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Meng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Yuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Fan
- Department of Critical Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xian-Bin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| |
Collapse
|
9
|
Mu D, He P, Shi Y, Jiang L, Liu G. Bioinspired Membrane-Coated Nanoplatform for Targeted Tumor Immunotherapy. Front Oncol 2022; 11:819817. [PMID: 35083163 PMCID: PMC8784379 DOI: 10.3389/fonc.2021.819817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy can effectively activate the immune system and reshape the tumor immune microenvironment, which has been an alternative method in cancer therapy besides surgery, radiotherapy, and chemotherapy. However, the current clinical outcomes are not satisfied due to the lack of targeting of the treatment with some unexpected damages to the human body. Recently, cell membrane-based bioinspired nanoparticles for tumor immunotherapy have attracted much attention because of their superior immune regulating, drug delivery, excellent tumor targeting, and biocompatibility. Together, the article reviews the recent progress of cell membrane-based bioinspired nanoparticles for immunotherapy in cancer treatment. We also evaluate the prospect of bioinspired nanoparticles in immunotherapy for cancer. This strategy may open up new research directions for cancer therapy.
Collapse
Affiliation(s)
- Dan Mu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|