1
|
Dong T, Liang Y, Chen H, Li Y, Li Z, Gao X. Quantitative proteomics revealed protein biomarkers to distinguish malignant pleural effusion from benign pleural effusion. J Proteomics 2024; 302:105201. [PMID: 38768894 DOI: 10.1016/j.jprot.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
To identify protein biomarkers capable of early prediction regarding the distinguishing malignant pleural effusion (MPE) from benign pleural effusion (BPE) in patients with lung disease. A four-dimensional data independent acquisition (4D-DIA) proteomic was performed to determine the differentially expressed proteins in samples from 20 lung adenocarcinoma MPE and 30 BPE. The significantly differential expressed proteins were selected for Gene Ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. Protein biomarkers with high capability to discriminate MPE from BPE patients were identified by Random Forest (RF) algorithm prediction model, whose diagnostic and prognostic efficacy in primary tumors were further explored in public datasets, and were validated by ELISA experiment. 50 important proteins (30 up-regulated and 20 down-regulated) were selected out as potential markers to distinguish the MPE from BPE group. GO analysis revealed that those proteins involving the most important cell component is extracellular space. KEGG analysis identified the involvement of cellular adhesion molecules pathway. Furthermore, the Area Under Curve (AUC) of these proteins were ranged from 0.717 to 1.000,with excellent diagnostic properties to distinguish the MPE. Finally, significant survival and gene and protein expression analysis demonstrated BPIFB1, DPP4, HPRT1 and ABI3BP had high discriminating values. SIGNIFICANCE: We performed a 4D-DIA proteomics to determine the differentially expressed proteins in pleural effusion samples from MPE and BPE. Some potential protein biomarkers were identified to distinguish the MPE from BPE patients., which may provide helpful diagnostic and therapeutic insights for lung cancer. This is significant because the median survival time of patients with MPE is usually 4-12 months, thus, it is particularly important to diagnose MPE early to start treatments promptly. The most common causes of MPE are lung cancers, while pneumonia and tuberculosis are the main causes of BPE. If more diagnostic markers could be identified periodically, there would be an important significance to clinical diagnose and treatment with drugs in lung cancer patients.
Collapse
Affiliation(s)
- Tingyan Dong
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China; Guangzhou Huayin Medical Laboratory Center, Guangzhou, Guangdong, China
| | - Yueming Liang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China; Department of Geriatric Respiratory Medicine, Guangdong Provincial Geriatrics Institute,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Chen
- Guangzhou Huayin Medical Laboratory Center, Guangzhou, Guangdong, China
| | - Yanling Li
- Guangzhou Huayin Medical Laboratory Center, Guangzhou, Guangdong, China
| | - Zhiping Li
- Shanghai Pudong New District Zhoupu Hospital, Shanghai, China
| | - Xinglin Gao
- Department of Geriatric Respiratory Medicine, Guangdong Provincial Geriatrics Institute,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wang X, Song J, Hu L, Ren G, Geng N, Song Z. Intrapleural perfusion hyperthermia improves the efficiency of anti‑PD1 antibody‑based therapy for lung adenocarcinoma: A case report. Oncol Lett 2024; 27:217. [PMID: 38586203 PMCID: PMC10995656 DOI: 10.3892/ol.2024.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Chemotherapy based on intrapleural perfusion hyperthermia (IPH) can markedly improve the sensitivity of lung adenocarcinoma cells to anti-programmed cell death receptor 1 (PD1) antibody adjuvant chemotherapy and enhance the clinical response of a patient. In the present study, a unique case of a patient who failed to respond to immunotherapy combined with chemotherapy but achieved prolonged stable disease after treatment with IPH and subsequent sintilimab-based treatment, is reported. A 50-year-old Chinese female patient was admitted to a regional cancer hospital presenting with hemoptysis and persistent fever. The findings of computed tomography imaging and thoracic puncture tissue biopsy indicated a diagnosis of adenocarcinoma. The TNM and clinical stage were identified as cT2N3M0 and stage IIIB, respectively. Immunohistochemical tests showed the expression of programmed death-ligand 1 (PD-L1) with a tumor proportion score of 2%. No other classic genetic alterations were detected. Initially, sintilimab-based chemotherapy at 200 mg was administered, for three cycles from April 2020, and increased pleural effusion was observed on the left side. The best overall response (BOR) assessment of the local lesion was progressive disease. IPH combined with chemotherapy was then carried out from August to September 2020, after which the same course of sintilimab-based chemotherapy as aforementioned was provided from October 2020 to September 2023. The BOR evaluation results during the monotherapy courses were all judged as stable disease. Therefore, it was concluded that IPH can substantially improve the efficiency of anti-PD1 antibody-based therapy for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei 071000, P.R. China
| | - Jin Song
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei 071000, P.R. China
| | - Ling Hu
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei 071000, P.R. China
| | - Guanying Ren
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei 071000, P.R. China
| | - Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zizheng Song
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
3
|
Ni C, Wu D, Chen Y, Wang S, Xiang N. Cascaded elasto-inertial separation of malignant tumor cells from untreated malignant pleural and peritoneal effusions. LAB ON A CHIP 2024; 24:697-706. [PMID: 38273802 DOI: 10.1039/d3lc00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Separation of malignant tumor cells (MTCs) from large background cells in untreated malignant pleural and peritoneal effusions (MPPEs) is critical for improving the sensitivity and efficiency of cytological diagnosis. Herein, we proposed a cascaded elasto-inertial cell separation (CEICS) device integrating an interfacial elasto-inertial microfluidic channel with a symmetric contraction expansion array (CEA) channel for pretreatment-free, high-recovery-ratio, and high-purity separation of MTCs from clinical MPPEs. First, the effects of flow-rate ratio, cell concentration, and cell size on separation performances in two single-stage channels were investigated. Then, the performances of the integrated CEICS device were characterized using blood cells spiked with three different tumor cells (MCF-7, MDA-MB-231, and A549 cells) at a high total throughput of 240 μL min-1. An average recovery ratio of ∼95% and an average purity of ∼61% for the three tumor cells were achieved. Finally, we successfully applied the CEICS device for the pretreatment-free separation of MTCs from clinical MPPEs of different cancers. Our CEICS device may provide a preparation tool for improving the sensitivity and efficiency of cytological examination.
Collapse
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Dan Wu
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Silin Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Han F, Guo J, Mu M, Bian K, Cui Z, Duan Q, Ma J, Jin L, Liu W, Chen F. Mechanism of ozone alleviation of malignant ascites in hepatocellular carcinoma through the inhibition of neutrophil extracellular traps. PNAS NEXUS 2023; 2:pgad280. [PMID: 37693209 PMCID: PMC10485884 DOI: 10.1093/pnasnexus/pgad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Malignant ascites in hepatocellular carcinoma is usually a sign of advanced disease and poor prognosis and is also thought to be associated with chronic inflammation mediated by neutrophil extracellular trap (NET) networks. Although ozone, a strong oxidant, has significant antibacterial and anti-inflammatory effects, its effectiveness in treating malignant liver ascites is unclear. We first measured the levels of NETs in the peripheral blood of patients with liver cancer and healthy individuals. Next, we constructed the H22 tumor-bearing mouse model and observed the abdominal girth, body weight, survival rate, and survival time in each group; we marked the proteins associated with NETs in mouse intestinal tissues by immunofluorescence; cf-DNA and cytokines in ascites such as: tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), matrix metalloprotein 9 (MMP-9), and interferon gamma (IFN-γ) levels in ascites were measured by enzyme-linked immunosorbent assay. The expression levels of phosphorylated adenylate-activated protein kinase (P-AMPK) and scavenger receptor-A (SR-A) were detected by immunocytochemistry in the intestinal tissues of each group of mice. We further examined the expression of P-AMPK and SR-A proteins in ascites deposits by Western blotting. The results show, the plasma levels of NETs were higher in patients with hepatocellular carcinoma than in normal subjects (P < 0.01). Abdominal girth and body weight were significantly reduced in the ozone-treated group compared with the model group, while survival and survival time were dose dependently increased (both P < 0.05). NET-associated guanine histone H3 and myeloperoxidase were abundantly expressed at neutrophil aggregates in the intestinal tissues of the model mice, whereas their expression was significantly reduced in the ozone-treated group. The levels of cf-DNA, IL-6, IFN-γ, MMP-9, VEGF, and TNF-α were dose dependently increased in the ascites of H22 tumor-bearing mice in the ozone-treated group compared with the model group (all P < 0.01), while the expression of P-AMPK and SR-A proteins was increased in the ozone-treated group compared with the model group. Ozone showed significant antiperitoneal fluid production properties in H22 tumor-bearing mice, and ozone reduced peritoneal fluid production by activating AMPK and up-regulating SR-A phagocytosis damage-associated molecular patterns to reduce the production of NETs. This suggests that ozone could be used as a new drug for the treatment of malignant ascites in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Feng Han
- Department of Radiotherapy, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| | - Jiayou Guo
- Department of Radiotherapy, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| | - Mingchen Mu
- Department of Radiotherapy, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| | - Ka Bian
- Department of Infectious Diseases, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| | - Zhenting Cui
- Department of Radiotherapy, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu 233030, Anhui Province, China
| | - Qiong Duan
- Department of Radiotherapy, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| | - Jianxin Ma
- Department of Radiotherapy, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| | - Lai Jin
- Institute of Translational Medicine, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Wentao Liu
- Institute of Translational Medicine, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Fanghong Chen
- Department of Center for Clinical Research and Translational Medical, Lianyungang Oriental Hospital Affiliated to Xuzhou Medical University, No.57, West Zhonghua Road, Lianyun District, Lianyungang 222042, Jiangsu Province, China
| |
Collapse
|
5
|
Ni C, Zhu Z, Zhou Z, Xiang N. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. Methods Mol Biol 2023; 2679:193-206. [PMID: 37300617 DOI: 10.1007/978-1-0716-3271-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of malignant tumor cells (MTCs) in pleural effusions is essential for determining the malignancy. However, the sensitivity of MTC detection is significantly decreased due to the existence of a massive number of background blood cells in large-volume samples. Herein, we provide a method for on-chip separation and enrichment of MTCs from malignant pleural effusions (MPEs) by integrating an inertial microfluidic sorter with an inertial microfluidic concentrator. The designed sorter and concentrator are capable of focusing cells toward the specified equilibrium positions by inducing intrinsic hydrodynamic forces, enabling the size-based sorting of cells and the removal of cell-free fluids for cell enrichment. A 99.9% removal of background cells and a nearly 1400-fold ultrahigh enrichment of MTCs from large-volume MPEs can be achieved by this method. The concentrated high-purity MTC solution can be used directly for cytological examination by immunofluorescence staining, enhancing the accurate identification of MPEs. The proposed method can also be employed for the detection and count of rare cells in various clinical samples.
Collapse
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Zhixian Zhu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Zheng Zhou
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Shin GR, Kim HE, Ju HJ, Kim JH, Choi S, Choi HS, Kim MS. Injectable click-crosslinked hydrogel containing resveratrol to improve the therapeutic effect in triple negative breast cancer. Mater Today Bio 2022; 16:100386. [PMID: 35991627 PMCID: PMC9386493 DOI: 10.1016/j.mtbio.2022.100386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Triple-negative breast cancer (TNBC) patients are considered intractable, as this disease has few effective treatments and a very poor prognosis even in its early stages. Here, intratumoral therapy with resveratrol (Res), which has anticancer and metastasis inhibitory effects, was proposed for the effective treatment of TNBC. An injectable Res-loaded click-crosslinked hyaluronic acid (Res-Cx-HA) hydrogel was designed and intratumorally injected to generate a Res-Cx-HA depot inside the tumor. The Res-Cx-HA formulation exhibited good injectability into the tumor tissue, quick depot formation inside the tumor, and the depot remained inside the injected tumor for extended periods. In vivo formed Res-Cx-HA depots sustained Res inside the tumor for extended periods. More importantly, the bioavailability and therapeutic efficacy of Res remained almost exclusively within the tumor and not in other organs. Intratumoral injection of Res-Cx-HA in animal models resulted in significant negative tumor growth rates (i.e., the tumor volume decreased over time) coupled with large apoptotic cells and limited angiogenesis in tumors. Therefore, Res-Cx-HA intratumoral injection is a promising way to treat TNBC patients with high efficacy and minimal adverse effects. Intratumoral injection was developed for treatment of triple negative breast cancer. Injectable formulation exhibited good injectability, quick depot formation. The formed depot remained inside the injected tumor for extended periods. Bioavailability and therapeutic efficacy of Res inside tumor were improved. In vivo formed depots resulted in significant negative cancer growth.
Collapse
|
7
|
Zhu Z, Li S, Wu D, Ren H, Ni C, Wang C, Xiang N, Ni Z. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics. LAB ON A CHIP 2022; 22:2097-2106. [PMID: 35441644 DOI: 10.1039/d2lc00082b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate and rapid diagnosis of malignant pleural and peritoneal effusions is critical due to potential association with advanced disease stages or progression. Traditional cytodiagnosis suffers from low efficiency and has difficulties in finding malignant tumor cells (MTCs) from a mass of exfoliated cells. Hence, a polymer microfluidic chip with a slanted spiral channel was employed for high-throughput and label-free enrichment of MTCs and MTC clusters from clinical malignant pleural and peritoneal effusions. The slanted spiral channel with trapezoidal cross-sections was fabricated by assembling two patterned polymer films of different thicknesses within one flow channel layer. After systematically exploring the effects of the particle size, effusion concentration, and flow rate on separation performance of the device, we realized the enrichment of MTCs from abundant blood cells in 2-fold diluted effusions. The results indicated that approximately 85% of the spiked tumor cells (A549 and MCF-7 cell lines) were recovered with high purities of over 37% at a high throughput of 2000 μL min-1. In clinical applications, we successfully enriched 24-2691 MTCs per mL from the diluted malignant pleural and peritoneal effusions collected from four types of cancer patients (n = 22). More importantly, the MTC clusters were further purified from single MTCs using a higher flow rate of 3000 μL min-1. Finally, we performed the rapid drug sensitivity test by coupling the microfluidic enrichment with CCK-8 assay. Our approach may serve as valuable assistance to accelerate cancer diagnosis and guide the selection of treatment medications.
Collapse
Affiliation(s)
- Zhixian Zhu
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shuang Li
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Dan Wu
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Hui Ren
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Chen Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Nan Xiang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
8
|
Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 12:832942. [PMID: 35111169 PMCID: PMC8801935 DOI: 10.3389/fimmu.2021.832942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|