1
|
Shao C, Tang B, Chu JCH, Lau KM, Wong WT, Che CM, Tai WCS, Wong WT, Wong CTT. Macrophage-engaging peptidic bispecific antibodies (pBsAbs) for immunotherapy via a facile bioconjugation strategy. Chem Sci 2024; 15:11272-11278. [PMID: 39055004 PMCID: PMC11268508 DOI: 10.1039/d4sc00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024] Open
Abstract
Bispecific antibodies are artificial molecules that fuse two different antigen-binding sites of monoclonal antibodies into one single entity. They have emerged as a promising next-generation anticancer treatment. Despite the fascinating applications of bispecific antibodies, the design and production of bispecific antibodies remain tedious and challenging, leading to a long R&D process and high production costs. We herein report an unprecedented strategy to cyclise and conjugate tumour-targeting peptides on the surface of a monoclonal antibody to form a novel type of bispecific antibody, namely the peptidic bispecific antibody (pBsAb). Such design combines the merits of highly specific monoclonal antibodies and serum-stable cyclic peptides that endows an additional tumour-targeting ability to the monoclonal antibody for binding with two different antigens. Our results show that the novel pBsAb, which comprises EGFR-binding cyclic peptides and an anti-SIRP-α monoclonal antibody, could serve as a macrophage-engaging bispecific antibody to initiate enhanced macrophage-cancer cell interaction and block the "don't eat me" signal between CD47-SIRP-α, as well as promoting antibody-dependent cellular phagocytosis and 3D cell spheroid infiltration. These findings give rise to a new type of bispecific antibody and a new platform for the rapid generation of new bispecific antibodies for research and potential therapeutic uses.
Collapse
Affiliation(s)
- Chihao Shao
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Bo Tang
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Jacky C H Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Kwai Man Lau
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - William C S Tai
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| |
Collapse
|
2
|
Li B, Yuan D, Chen H, Wang X, Liang Y, Wong CTT, Xia J. Site-selective antibody-lipid conjugates for surface functionalization of red blood cells and targeted drug delivery. J Control Release 2024; 370:302-309. [PMID: 38663752 DOI: 10.1016/j.jconrel.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Displaying antibodies on carrier surfaces facilitates precise targeting and delivery of drugs to diseased cells. Here, we report the synthesis of antibody-lipid conjugates (ALCs) through site-selective acetylation of Lys 248 in human Immunoglobulin G (IgG) and the development of antibody-functionalized red blood cells (immunoRBC) for targeted drug delivery. ImmunoRBC with the HER2-selective antibody trastuzumab displayed on the surface (called Tras-RBC) was constructed following a three-step procedure. First, a peptide-guided, proximity-induced reaction transferred an azidoacetyl group to the ε-amino group of Lys 248 in the Fc domain. Second, the azide-modified IgG was subsequently conjugated with dibenzocyclooctyne (DBCO)-functionalized lipids via strain-promoted azide-alkyne cycloaddition (SPAAC) to result in ALCs. Third, the lipid portion of ALCs was then inserted into the cell membranes, and IgGs were displayed on red blood cells (RBCs) to construct immunoRBCs. We then loaded Tras-RBC with a photosensitizer (PS), Zinc phthalocyanine (ZnPc), to selectively target HER2-overexpressing cells, release ZnPc into cancer cells following photolysis, and induce photodynamic cytotoxicity in the cancer cells. This work showcases assembling immunoRBCs following site-selective lipid conjugation on therapeutic antibodies and the targeted introduction of PS into cancer cells. This method could apply to the surface functionalization of other membrane-bound vesicles or lipid nanoparticles for antibody-directed drug delivery.
Collapse
Affiliation(s)
- Biquan Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dingdong Yuan
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xun Wang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yujie Liang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Zhao WN, Xing J, Wang M, Li H, Sun S, Wang X, Xu Y. Engineering a hyaluronic acid-encapsulated tumor-targeted nanoplatform with sensitized chemotherapy and a photothermal effect for enhancing tumor therapy. Int J Biol Macromol 2024; 264:130785. [PMID: 38471605 DOI: 10.1016/j.ijbiomac.2024.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Chemotherapy remains one of the most widely used cancer treatment modalities in clinical practice. However, the characteristic microenvironment of solid tumors severely limits the anticancer efficacy of chemotherapy. In addition, a single treatment modality or one death pathway reduces the antitumor outcome. Herein, tumor-targeting O2 self-supplied nanomodules (CuS@DOX/CaO2-HA) are proposed that not only alleviate tumor microenvironmental hypoxia to promote the accumulation of chemotherapeutic drugs in tumors but also exert photothermal effects to boost drug release, penetration and combination therapy. CuS@DOX/CaO2-HA consists of copper sulfide (CuS)-loaded calcium peroxide (CaO2) and doxorubicin (DOX), and its surface is further modified with HA. CuS@DOX/CaO2-HA underwent photothermal treatment to release DOX and CaO2. Hyperthermia accelerates drug penetration to enhance chemotherapeutic efficacy. The exposed CaO2 reacts with water to produce Ca2+, H2O2 and O2, which sensitizes cells to chemotherapy through mitochondrial damage caused by calcium overload and a reduction in drug efflux via the alleviation of hypoxia. Moreover, under near infrared (NIR) irradiation, CuS@DOX/CaO2-HA initiates a pyroptosis-like cell death process in addition to apoptosis. In vivo, CuS@DOX/CaO2-HA demonstrated high-performance antitumor effects. This study provides a new strategy for synergistic enhancement of chemotherapy in hypoxic tumor therapy via combination therapy and multiple death pathways.
Collapse
Affiliation(s)
- Wei-Nan Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Min Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
4
|
Thompson T, Pewklang T, Piyanuch P, Wanichacheva N, Kamkaew A, Burgess K. A fluorescent electrophile for CLIPS: self indicating TrkB binders. Org Biomol Chem 2024; 22:506-512. [PMID: 38111346 PMCID: PMC10863675 DOI: 10.1039/d3ob01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Combination of cysteine-containing peptides with electrophiles provides efficient access to cyclo-organopeptides. However, there are no routes to intrinsically fluorescent cyclo-organopeptides containing robust, brilliant fluorophores emitting at wavelengths longer than cellular autofluorescence. We show such fluorescent cyclo-organopeptides can be made via SNAr reactions of cysteine-containing peptides with a BODIPY system. Seven compounds of this type were prepared to test as probes; six contained peptide sequences corresponding to loop regions in brain-derived neurotrophic factor and neurotrophic factor 4 (BDNF and NT-4) which bind tropomyocin receptor kinase B (TrkB). Cellular assays in serum-free media indicated two of the six key compounds induced survival of HEK293 cells stably transfected with TrkB whereas a control did not. The two compounds inducing cell survival bound TrkB on those cells (Kd ∼40 and 47 nM), illustrating how intrinsically fluorescent cyclo-organopeptides can be assayed for quantifiable binding to surface receptors in cell membrane environments.
Collapse
Affiliation(s)
- Tye Thompson
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| | - Thitima Pewklang
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornthip Piyanuch
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| |
Collapse
|
5
|
Tam LKB, Chu JCH, He L, Yang C, Han KC, Cheung PCK, Ng DKP, Lo PC. Enzyme-Responsive Double-Locked Photodynamic Molecular Beacon for Targeted Photodynamic Anticancer Therapy. J Am Chem Soc 2023; 145:7361-7375. [PMID: 36961946 PMCID: PMC10080691 DOI: 10.1021/jacs.2c13732] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
An advanced photodynamic molecular beacon (PMB) was designed and synthesized, in which a distyryl boron dipyrromethene (DSBDP)-based photosensitizer and a Black Hole Quencher 3 moiety were connected via two peptide segments containing the sequences PLGVR and GFLG, respectively, of a cyclic peptide. These two short peptide sequences are well-known substrates of matrix metalloproteinase-2 (MMP-2) and cathepsin B, respectively, both of which are overexpressed in a wide range of cancer cells either extracellularly (for MMP-2) or intracellularly (for cathepsin B). Owing to the efficient Förster resonance energy transfer between the two components, this PMB was fully quenched in the native form. Only upon interaction with both MMP-2 and cathepsin B, either in a buffer solution or in cancer cells, both of the segments were cleaved specifically, and the two components could be completely separated, thereby restoring the photodynamic activities of the DSBDP moiety. This PMB could also be activated in tumors, and it effectively suppressed the tumor growth in A549 tumor-bearing nude mice upon laser irradiation without causing notable side effects. In particular, it did not cause skin photosensitivity, which is a very common side effect of photodynamic therapy (PDT) using conventional "always-on" photosensitizers. The overall results showed that this "double-locked" PMB functioned as a biological AND logic gate that could only be unlocked by the coexistence of two tumor-associated enzymes, which could greatly enhance the tumor specificity in PDT.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lin He
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Caixia Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kam-Chu Han
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Cheung CHP, Chong TH, Wei T, Liu H, Li X. Guanidine Additive Enabled Intermolecular ortho-Phthalaldehyde-Amine-Thiol Three-Component Reactions for Modular Constructions. Angew Chem Int Ed Engl 2023; 62:e202217150. [PMID: 36624047 DOI: 10.1002/anie.202217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Recently, ortho-phthalaldehyde (OPA) is experiencing a renascence for the modification of proteins and peptides through OPA-amine two-component reactions for bioconjugation and intramolecular OPA-amine-thiol three-component reactions for cyclization. Historically, small thiol molecules were used in large excess to allow for the intermolecular OPA-amine-thiol reaction forming 1-thio-isoindole derivatives. In this study, we discovered that guanidine could serve as an effective additive to switch the intermolecular OPA-amine-thiol three-component reaction to a stoichiometric process and enable the modular construction of peptide-peptide, and peptide-drug conjugate structures. Thus, 12 model peptide-peptide conjugates have been synthesized from unprotected peptides featuring all proteinogenic residues. Besides, 6 peptide-drug conjugates have been prepared in one step, with excellent conversions and isolated yields. In addition, a conjugate product has been further functionalized by utilizing a premodified OPA derivative, demonstrating the versatility and flexibility of this reaction.
Collapse
Affiliation(s)
- Carina Hey Pui Cheung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tin Hang Chong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| |
Collapse
|
7
|
Cheng Y, Chen Q, Qian Z, Shan T, Bai L, Jiang X, Li C, Wang Y. Versatile Red Blood Cells for Triple-Negative Breast Cancer Treatment via Stepwise Photoactivations. Adv Healthc Mater 2023; 12:e2201690. [PMID: 36263794 DOI: 10.1002/adhm.202201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/15/2022] [Indexed: 01/26/2023]
Abstract
Phototherapies have many advantages for triple-negative breast cancer (TNBC) treatment. However, their effects are often limited by short blood circulation time, poor tumor selectivity and weak penetration of phototherapeutic agents, and tumor hypoxia. For overcoming these limitations, a versatile biomimetic system is developed based on red blood cells (RBCs). Photothermal agent new indocyanine green (IR820) is conjugated with the cell/tissue-penetrating TAT peptide and further efficiently encapsulated into the intact RBCs by crossing cell membranes to realize the long blood circulation. Meanwhile, cyclic RGD peptide (cRGD) is linked to the surfaces of RBCs through phospholipid insertion to obtain tumor vessel-targeting ability. Photosensitizer temoporfin (mTHPC) is next loaded into the membranes of RBCs by spontaneous transferring. The acquired biomimetic system (cRGD-RBC@mTHPC/TAT-IR820) exhibits potent photodynamic performance upon 652 nm laser irradiation with the facilitation of oxyhemoglobin, which could not only trigger TAT-IR820 release but also destroy tumor vessels. TAT-IR820 penetrates deeply into tumor tissue via the mediation of TAT peptide, exerting greatly promoted photothermal ablation against TNBC upon 808 nm laser irradiation. In situ generated tumor antigens further induce robust immune responses to suppress TNBC recurrence and metastasis. In summary, this study provides a versatile biomimetic system for comprehensive TNBC treatment via stepwise photodynamic and photothermal activations.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Qian Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhanyin Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tianhe Shan
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Jiang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, 300070, China
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
8
|
Xiong J, Chu JCH, Fong WP, Wong CTT, Ng DKP. Specific Activation of Photosensitizer with Extrinsic Enzyme for Precisive Photodynamic Therapy. J Am Chem Soc 2022; 144:10647-10658. [PMID: 35639988 DOI: 10.1021/jacs.2c04017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of functional proteins into the intracellular space has been a challenging task that could lead to a myriad of therapeutic applications. We report herein a novel bioconjugation strategy for enzyme modification and selective delivery into cancer cells for lock-and-key-type activation of photosensitizers. Using a bifunctional linker containing a bis(bromomethyl)phenyl group and an o-phthalaldehyde moiety, it could induce cyclization of the peptide sequence Ac-NH-CRGDfC-CONH2 through site-specific dibenzylation with the two cysteine residues and further coupling with β-galactosidase via the phthalaldehyde-amine capture reaction. This facile two-step one-pot procedure enabled the preparation of cyclic RGD-modified β-galactosidase readily, which could be internalized selectively into αvβ3 integrin-overexpressed cancer cells. Upon encountering an intrinsically quenched distyryl boron dipyrromethene-based photosensitizer conjugated with a galactose moiety through a self-immolative linker inside the cells, the extrinsic enzyme induced specific cleavage of the β-galactosidic bond followed by self-immolation to release an activated derivative, thereby restoring the photodynamic activities and causing cell death effectively. The high specificity of this extrinsic enzyme-activated photosensitizing system was also demonstrated in vivo using nude mice bearing an αvβ3 integrin-positive U87-MG tumor. The specific activation at the tumor site resulted in lighting up and complete eradication of the tumor upon laser irradiation, while by using the native β-galactosidase, the effects were largely reduced. In contrast to the conventional activation using intrinsic enzymes, this extrinsic enzyme activatable approach can further minimize the nonspecific activation toward precisive photodynamic therapy.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|