1
|
Chen A, Li B, Dang Q, Liu C, Shi L, Niu S, Wang S, Zhao Y, Zhang B, Cha D. Carboxymethyl chitosan/dialdehyde quaternized pullulan self-healing hydrogel loaded with tranexamic acid for rapid hemostasis. Carbohydr Polym 2025; 348:122817. [PMID: 39562092 DOI: 10.1016/j.carbpol.2024.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 11/21/2024]
Abstract
In this study, we designed novel self-healing hydrogels (CMC/DAQP-HGs) using carboxymethyl chitosan (CMC) and dialdehyde quaternized pullulan (DAQP), aimed at loading tranexamic acid (TA) for rapid hemostasis. Meanwhile, CMC/dialdehyde pullulan (DAP) hydrogels (CMC/DAP-HGs) were prepared for comparison with CMC/DAQP-HGs. Experimental results showed that (1) DAQP, DAP, CMC/DAQP-HGs, and CMC/DAP-HGs were successfully prepared; (2) both types of hydrogels demonstrated excellent swelling (swelling ratio of 12.66-22.18 g/g), water retention (> 24 h), self-healing, and injectable properties, biocompatibility (hemolysis ratio < 2 %, relative cell viability of L929 and HSF > 80 %), and degradability; (3) CMC/DAQP-HGs had superior adhesive, antibacterial, and hemostatic properties compared to CMC/DAP-HGs, with CMC/DAQP-HG1 showing the best performance, including a tissue adhesion strength of 6.54 kPa, ~100 % of inhibition against E. coli and S. aureus, and hemostasis time in the three animal models <312 s; (4) the novel hydrogels effectively encapsulated tranexamic acid (TA) and controlled TA release; and (5) the addition of TA significantly enhanced the hydrogels' hemostatic efficacy, with the hemostasis time values in the TA-loaded CMC/DAQP-HG1 (TA/CMC/DAQP-HG1) group being reduced by >56 % compared to those in the gelatin sponge group, indicating that TA/CMC/DAQP-HG1 had the potential to be an ideal hemostatic dressing.
Collapse
Affiliation(s)
- Aoqing Chen
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Lufei Shi
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
2
|
Sarkhel S, Jaiswal A. Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61503-61529. [PMID: 39479880 DOI: 10.1021/acsami.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
With a surge in the number of accidents and chronic wounds worldwide, there is a growing need for advanced hemostatic and wound care solutions. In this regard, in situ forming hydrogels have emerged as a revolutionary biomaterial due to their inherent properties, which include biocompatibility, biodegradability, porosity, and extracellular matrix (ECM)-like mechanical strength, that render them ideal for biomedical applications. This review demonstrates the advancements of in situ forming hydrogels, tracing their evolution from injectable to more sophisticated forms, such as sprayable and 3-D printed hydrogels. These hydrogels are designed to modulate the pathophysiology of wounds, enhancing hemostasis and facilitating wound repair. The review presents different methodologies for in situ forming hydrogel synthesis, spanning a spectrum of physical and chemical cross-linking techniques. Furthermore, it showcases the adaptability of hydrogels to the dynamic requirements of wound healing processes. Through a detailed discussion, this article sheds light on the multifunctional capabilities of these hydrogels such as their antibacterial, anti-inflammatory, and antioxidant properties. This review aims to inform and inspire continued advancement in the field, ultimately contributing to the development of sophisticated wound care solutions that meet the complexity of clinical needs.
Collapse
Affiliation(s)
- Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| |
Collapse
|
3
|
Cui W, Liu Y, Yue Y, Wang J, Meng X, Yang Z, Gong C, Yang JL. Novel antibacterial pullulan derivatives modified with quaternary phosphonium salts for infected wound treatments. Int J Biol Macromol 2024; 282:136893. [PMID: 39490496 DOI: 10.1016/j.ijbiomac.2024.136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The development of novel antibacterial agents is urgently needed to tackle bacterial infection, the major global issue menacing human health. Among them, polymeric quaternary phosphonium salts are worth noticing owing to their strong antibacterial activities and other merits including low bacterial drug resistance. Herein, pullulan modified with quaternary phosphonium salts (PQP) was synthesized using esterification reactions of pullulan and (5-carboxypentyl)triphenylphosphonium bromide (CPTPPB) mediated by N,N'‑carbonyldiimidazole (CDI), and was evaluated as novel antibacterial agents for treating wound infection for the first time. The chemical structures, chemical bonding, elemental compositions, crystalline properties and thermostability of PQP were systematically investigated. PQP exhibited in vitro antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which were unveiled by the spread plate method and possibly resulted from the damage of bacterial cell walls/membranes mediated by electrostatic and hydrophobic interactions according to preliminary mechanism studies. Weak cytotoxicity and excellent hemocompatibility of PQP at the effective bactericidal concentration were observed. Moreover, in the infected wound model of mice, PQP was capable of disinfecting the wound and accelerating the healing. We opine PQP in this work is promising for antibacterial applications and will inspire the synthesis of novel antibacterial agents derived from natural polymers.
Collapse
Affiliation(s)
- Wenzhuang Cui
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China; School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yujie Liu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Ying Yue
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jun Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xianhua Meng
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, China
| | - Zhizhou Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chu Gong
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
4
|
Sarkar A, Sarkhel S, Bisht D, Jaiswal A. Cationic dextrin nanoparticles for effective intracellular delivery of cytochrome C in cancer therapy. RSC Chem Biol 2024; 5:249-261. [PMID: 38456040 PMCID: PMC10915965 DOI: 10.1039/d3cb00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/19/2023] [Indexed: 03/09/2024] Open
Abstract
Intracellular protein delivery shows promise as a selective and specific approach to cancer therapy. However, a major challenge is posed by delivering proteins into the target cells. Despite the development of nanoparticle (NP)-based approaches, a versatile and biocompatible delivery system that can deliver active therapeutic cargo into the cytosol while escaping endosome degradation remains elusive. In order to overcome these challenges, a polymeric nanocarrier was prepared using cationic dextrin (CD), a biocompatible and biodegradable polymer, to encapsulate and deliver cytochrome C (Cyt C), a therapeutic protein. The challenge of endosomal escape of the nanoparticles was addressed by co-delivering the synthesized NP construct with chloroquine, which enhances the endosomal escape of the therapeutic protein. No toxicity was observed for both CD NPs and chloroquine at the concentration tested in this study. Spectroscopic investigations confirmed that the delivered protein, Cyt C, was structurally and functionally active. Additionally, the delivered Cyt C was able to induce apoptosis by causing depolarization of the mitochondrial membrane in HeLa cells, as evidenced by flow cytometry and microscopic observations. Our findings demonstrate that an engineered delivery system using CD NPs is a promising platform in nanomedicine for protein delivery applications.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Deepali Bisht
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| |
Collapse
|
5
|
Ganie SA, Rather LJ, Assiri MA, Li Q. Recent innovations (2020-2023) in the approaches for the chemical functionalization of curdlan and pullulan: A mini-review. Int J Biol Macromol 2024; 260:129412. [PMID: 38262826 DOI: 10.1016/j.ijbiomac.2024.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Chemical modification represents a highly efficacious approach for enhancing the physicochemical characteristics and biological functionalities of natural polysaccharides. However, not all polysaccharides have considerable pharmacologic activity; so, appropriate chemical modification strategies can be selected in accordance with the distinct structural properties of polysaccharides to aid in improving and encouraging the presentation of their biological activities. Hence, there has been a growing interest in the chemical alteration of polysaccharides due to their various properties such as antioxidant, anticoagulant, antiviral, anticancer, biomedical, antibacterial, and immunomodulatory effects. This paper offers a comprehensive examination of recent scientific advancements produced over the past four years in the realm of unique chemical and functional modifications in curdlan and pullulan structures. This review aims to provide readers with an overview of the structural activity correlations observed in the backbone structures of curdlan and pullulan, as well as the diverse chemical modification processes employed for these polysaccharides. Additionally, the review aims to examine the effects of combining various bioactive molecules with chemically modified curdlan and pullulan and explore their potential applications in various important fields.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
6
|
Bose S, Dahat Y, Kumar D, Haldar S, Das SK. A membrane targeted multifunctional cationic nanoparticle conjugated fusogenic nanoemulsion (CFusoN): induced membrane depolarization and lipid solubilization to accelerate the killing of Staphylococcus aureus. MATERIALS HORIZONS 2024; 11:661-679. [PMID: 37830433 DOI: 10.1039/d3mh01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bacterial infections caused by Staphylococcus aureus are one of the growing concerns for human health care management globally. Antibiotic-associated adverse effects and the emergence of bacterial resistant strains necessitate the development of an alternative yet effective approach. Nanoemulsion-based therapy has emerged as a potential therapeutic strategy to combat bacterial infestation. Herein, we designed a cationic metal nanoparticle-conjugated fusogenic nanoemulsion (CFusoN) as a lipid solubilizing nanovesicle for the effective treatment of S. aureus infection with a killing efficiency of 99.999%. The cationic nanoparticle-conjugated nanoemulsion (viz. NECNP) (24.4 ± 2.9 mV) electrostatically bound with the negatively charged bacterial cell membrane (-10.2 ± 3.7 mV) causing alteration of the bacterial surface charge. The fluorometric and flow cytometry studies confirmed the bacterial membrane depolarization and altered cell membrane permeability leading to cell death. The atomic force microscopic studies further demonstrated the damage of the cellular ultrastructure, while the transmission electron microscopic image and membrane lipid solubilization analysis depicted the solubilization of the bacterial membrane lipid bilayer along with the leakage of the intracellular contents. The cell membrane fatty acid analysis revealed that the methyl esters of palmitic acid, stearic acid and octadecadienoic acid isomers were solubilized after the treatment of S. aureus with CFusoN. The bactericidal killing efficiency of CFusoN is proposed to occur through the synergistic efficacy of the targeted attachment of CNP to the bacterial cells along with the lipid solubilization property of NE. Interestingly, NECNP didn't elicit any in vitro hemolytic activity or cytotoxicity against red blood cells (RBCs) and L929 fibroblast cells, respectively, at its bactericidal concentration. Furthermore, a porcine skin wound infection model exhibited the enhanced wound cleansing potency of CFusoN in comparison to the commercially available wound cleansers. The obtained antibacterial activity, biocompatibility and skin wound disinfection efficacy of the NECNP demonstrated the formulation of a cell targeted CFusoN as a promising translatable strategy to combat bacterial infection.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogita Dahat
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division (ARDD), CSIR-North East Institute of Science and Technology (NEIST), NH37, Pulibor, Jorhat, Assam 785006, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Roy S, Haloi P, B SL, Chawla S, Badireenath Konkimalla V, Jaiswal A. Biocompatible quaternary pullulan functionalized 2D MoS 2 glycosheet-based non-leaching and infection-resistant coatings for indwelling medical implants. J Mater Chem B 2023; 11:10418-10432. [PMID: 37877327 DOI: 10.1039/d3tb01816d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Medical implants are frequently used in medicine and reconstructive surgery to treat various pathological and anatomical conditions. However, over time, biofilm formation on the surface of these implants can cause recurrent infections and subsequent inflammatory responses in the host, resulting in tissue damage, necrosis, and re-hospitalization. To address these implant-associated infections, the best approach is to create antimicrobial coatings. Here, we report the fabrication of a biocompatible, non-leaching, and contact-based antibacterial coating for implants using quaternary pullulan functionalized MoS2 (MCP) glycosheets. The cationic MCP glycosheets were coated on the surfaces of polydopamine-modified stainless steel and polyvinyl fluoride substrates through a simple process of electrostatic interaction. The developed coating showed excellent antibacterial activity (>99.5%) against E. coli and S. aureus that remained stable over 30 days without leaching out of the substrates and retained its antibacterial activity. MCP-coated implants did not induce any acute or sub-chronic toxicity to mammalian cells, both in vitro and in vivo. Furthermore, MCP coating prevented S. aureus colonization on stainless steel implants in a mouse model of implant-associated infection. The MCP coating developed in this study represents a simple, safe, and effective antibacterial coating for preventing implant-associated infections.
Collapse
Affiliation(s)
- Shounak Roy
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Siva Lokesh B
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
8
|
Kumari M, Kashyap HK. Wrapping-Trapping versus Extraction Mechanism of Bactericidal Activity of MoS 2 Nanosheets against Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5440-5453. [PMID: 37013340 DOI: 10.1021/acs.langmuir.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The promising broad-spectrum antibacterial activity of two-dimensional molybdenum disulfide (2D MoS2) has been widely recognized in the past decade. However, a comprehensive understanding of how the antibacterial pathways opted by the MoS2 nanosheets varies with change in lipid compositions of different bacterial strains is imperative to harness their full antibacterial potential and remains unexplored thus far. Herein, we present an atomistic molecular dynamics (MD) study to investigate the distinct modes of antibacterial action of MoS2 nanosheets against Staphylococcus aureus (S. aureus) under varying conditions. We observed that the freely dispersed nanosheets readily adhered to the bacterial membrane outer surface and opted for an unconventional surface directed "wrapping-trapping" mechanism at physiological temperature (i.e., 310 K). The adsorbed nanosheets mildly influenced the membrane structure by originating a compact packing of the lipid molecules present in its direct contact. Interestingly, these surface adsorbed nanosheets exhibited extensive phospholipid extraction to their surface, thereby inducing transmembrane water passage analogous to the cellular leakage, even at a slight increment of 20 K in the temperature. The strong van der Waals interactions between lipid fatty acyl tails and MoS2 basal planes were primarily responsible for this destructive phospholipid extraction. In addition, the MoS2 nanosheets bound to an imaginary substrate, controlling their vertical alignment, demonstrated a "nano-knives" action by spontaneously piercing inside the membrane core through their sharp corner, subsequently causing localized lipid ordering in their vicinity. The larger nanosheet produced a more profound deteriorating impact in all of the observed mechanisms. Keeping the existing knowledge about the bactericidal activity of 2D MoS2 in view, our study concludes that their antibacterial activity is strongly governed by the lipid composition of the bacterial membrane and can be intensified either by controlling the nanosheet vertical alignment or by moderately warming up the systems.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
10
|
Biopolymers in diabetic wound care management: a potential substitute to traditional dressings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Sarkar A, Roy S, Bhatia P, Jaiswal A. Quaternary ammonium substituted dextrin‐based biocompatible cationic nanoparticles with ultrahigh
pH
stability for drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Shounak Roy
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Prachi Bhatia
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| |
Collapse
|
12
|
Fabrication and optimization of BSA-PEG-loaded phenethyl isothiocyanate (PEITC) nanoparticles using Box-Behnken design for potential application in subcutaneous infection condition. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Filipe GA, Silveira VAI, Gonçalves MC, Beltrame Machado RR, Nakamura CV, Baldo C, Mali S, Kobayashi RKT, Colabone Celligoi MAP. Bioactive films for the control of skin pathogens with sophorolipids from Starmerella bombicola. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kumari M, Kashyap HK. MoS 2 nanosheet induced destructive alterations in the Escherichia coli bacterial membrane. SOFT MATTER 2022; 18:7159-7170. [PMID: 36097850 DOI: 10.1039/d2sm00871h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two dimensional molybdenum disulfide (MoS2) nanosheets have recently gained wide recognition for their efficient broad-spectrum antibacterial activity complemented with great biocompatibility and minimal bacterial resistance inducing capabilities. However, despite the numerous investigations, the molecular level interactions at the nano-bio interface responsible for their bactericidal activity remain obscure. Herein, through an atomistic molecular dynamics study, we attempt to seek an in-depth understanding of the atomic level details of the underlying mechanism of their antibacterial action against the Escherichia coli (E. coli) bacterial membrane. Our study reveals a two-step MoS2 nanosheet interaction pathway with the bacterial membrane. The nanosheets spontaneously adhere to the membrane surface and prompt vigorous phospholipid extraction majorly via strong van der Waals interactions with lipid hydrophobic tails. The lipid extraction process originates a significant water intrusion in the bilayer hydrophobic region, signifying the onset of cytoplasmic leakage under realistic conditions. Further, a synergistic effect of lipid-lipid self-interactions and lipid-MoS2 dispersion interactions drags the nanosheet to completely immerse in the bilayer hydrophobic core. The embedded nanosheets induce a layerwise structural rearrangement of the membrane lipids in their vicinity, thus altering the structural and dynamic features of the membrane in a localized manner by (i) increasing the lipid fatty acyl tail ordering and (ii) alleviating the lipid lateral dynamics. The detrimental efficacy of the nanosheets can be magnified by enlarging the nanosheet size or by increasing the nanosheet concentration. Our study concludes that the MoS2 nanosheets can exhibit their antibacterial action through destructive phospholipid extraction as well as by altering the morphology of the membrane by embedding in the membrane core.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
15
|
Kumari M, Roy S, Jaiswal A, Kashyap HK. Anionic Lipid Clustering-Mediated Bactericidal Activity and Selective Toxicity of Quaternary Ammonium-Substituted Polycationic Pullulan against the Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8065-8076. [PMID: 35731708 DOI: 10.1021/acs.langmuir.2c00871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-amphiphilic polycations have recently been recognized to hold excellent antimicrobial potential with great mammalian cell compatibility. In a recent study, the excellent broad-spectrum bactericidal efficacy of a quaternary ammonium-substituted cationic pullulan (CP4) was demonstrated. Their selective toxicity and nominal probability to induce the acquisition of resistance among pathogens fulfill the fundamental requirements of new-generation antibacterials. However, there have been exiguous attempts in the literature to understand the antimicrobial activity of polycations against Gram-positive bacterial membranes. Here, for the first time, we have scrutinized the molecular level interactions of CP4 tetramers with a model Staphylococcus aureus membrane to understand their probable antibacterial function using molecular dynamics simulations. Our analysis reveals that the hydrophilic CP4 molecules are spontaneously adsorbed onto the membrane outer leaflet surface by virtue of strong electrostatic interactions and do not penetrate into the lipid tail hydrophobic region. This surface binding of CP4 is strengthened by the formation of anionic lipid-rich domains in their vicinity, causing lateral compositional heterogeneity. The major outcomes of the asymmetric accumulation of bulky polycationic CP4 on one leaflet are (i) anionic lipid segregation at the interaction site and (ii) a decrease in the cationic lipid acyl tail ordering and ease of water translocation across the lipid hydrophobic barrier. The membrane-CP4 interactions are strongly monitored by the ionic strength; a higher salt concentration weakens the binding of CP4 on the membrane surface. In addition, our study also substantiates the non-interacting behavior of CP4 oligomers with biomimetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, indicating their cell selectivity and specificity against pathogenic membranes.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|