1
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2024:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Eichler C, Himmelstoß M, Plangger R, Weber LI, Hartl M, Kreutz C, Micura R. Advances in RNA Labeling with Trifluoromethyl Groups. Chemistry 2023; 29:e202302220. [PMID: 37534701 PMCID: PMC10947337 DOI: 10.1002/chem.202302220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.
Collapse
Affiliation(s)
- Clemens Eichler
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Maximilian Himmelstoß
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Leonie I. Weber
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Markus Hartl
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
3
|
Karimi A, Wang K, Basran K, Copp W, Luedtke NW. A Bright and Ionizable Cytosine Mimic for i-Motif Structures. Bioconjug Chem 2023. [PMID: 37196003 DOI: 10.1021/acs.bioconjchem.3c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A new fluorescent cytosine analog "tsC" containing a trans-stilbene moiety was synthesized and incorporated into hemiprotonated base pairs that comprise i-motif structures. Unlike previously reported fluorescent base analogs, tsC mimics the acid-base properties of cytosine (pKa ≈ 4.3) while exhibiting bright (ε × Φ ≈ 1000 cm-1 M-1) and red-shifted fluorescence (λem = 440 → 490 nm) upon its protonation in the water-excluded interface of tsC+:C base pairs. Ratiometric analyses of tsC emission wavelengths facilitate real-time tracking of reversible conversions between single-stranded, double-stranded, and i-motif structures derived from the human telomeric repeat sequence. Comparisons between local changes in tsC protonation with global structure changes according to circular dichroism suggest partial formation of hemiprotonated base pairs in the absence of global i-motif structures at pH = 6.0. In addition to providing a highly fluorescent and ionizable cytosine analog, these results suggest that hemiprotonated C+:C base pairs can form in partially folded single-stranded DNA in the absence of global i-motif structures.
Collapse
Affiliation(s)
- Ashkan Karimi
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
- Centre de recherche en biologie structural, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kaixiang Wang
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
| | - Kaleena Basran
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
| | - William Copp
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
- Centre de recherche en biologie structural, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A-1A3, Canada
| |
Collapse
|
4
|
Kumagai T, Kinoshita B, Hirashima S, Sugiyama H, Park S. Thiophene-Extended Fluorescent Nucleosides as Molecular Rotor-Type Fluorogenic Sensors for Biomolecular Interactions. ACS Sens 2023; 8:923-932. [PMID: 36740828 DOI: 10.1021/acssensors.2c02617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent molecular rotors are versatile tools for the investigation of biomolecular interactions and the monitoring of microenvironmental changes in biological systems. They can transform invisible information into a fluorescence signal as a straightforward response. Their utility is synergistically amplified when they are merged with biomolecules. Despite the tremendous significance and superior programmability of nucleic acids, there are very few reports on the development of molecular rotor-type isomorphic nucleosides. Here, we report the synthesis and characterization of a highly emissive molecular rotor-containing thymine nucleoside (ThexT) and its 2'-O-methyluridine analogue (2'-OMe-ThexU) as fluorogenic microenvironment-sensitive sensors that emit vivid fluorescence via an interaction with the target proteins. ThexT and 2'-OMe-ThexU may potentially serve as robust probes for a broad range of applications, such as fluorescence mapping, to monitor viscosity changes and specific protein-binding interactions in biological systems.
Collapse
Affiliation(s)
- Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ban Kinoshita
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
6
|
Hirashima S, Sugiyama H, Park S. Characterization of 2-Fluoro-2'-deoxyadenosine in Duplex, G-quadruplex and I-motif. Chembiochem 2022; 23:e202200222. [PMID: 35438834 DOI: 10.1002/cbic.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/12/2022]
Abstract
Among various kinds of fluorine-substituted biomolecules, 2-fluoroadenine (2FA) and its derivatives have been actively investigated as therapeutic reagents, radio-sensitizers, and 19F-NMR probe. In spite of their excellent properties, DNA containing 2FA has not been studied well. Toward fundamental understanding and future applications to the development of functional nucleic acids, we characterized 2FA-containing oligonucleotides for canonical right-handed DNA duplex, G-quadruplex, and i-motif structures. Properties of 2FA were similar to native adenine due to the small size of fluorine atom, but it showed unique features caused by high electronegativity. This work provides useful information for future application of 2FA-modified DNA.
Collapse
Affiliation(s)
- Shingo Hirashima
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku,, 606-8502, Kyoto, JAPAN
| | - Hiroshi Sugiyama
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| | - Soyoung Park
- Osaka University: Osaka Daigaku, Immunology Research Frontier Center, 3-1 Ymadaoka Suita, 565-0871, Osaka, JAPAN
| |
Collapse
|
7
|
Manna S, Sontakke VA, Srivatsan SG. Incorporation and Utility of a Responsive Ribonucleoside Analogue in Probing the Conformation of a Viral RNA Motif by Fluorescence and 19 F NMR Spectroscopy. Chembiochem 2021; 23:e202100601. [PMID: 34821449 DOI: 10.1002/cbic.202100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Indexed: 11/09/2022]
Abstract
Development of versatile probes that can enable the study of different conformations and recognition properties of therapeutic nucleic acid motifs by complementing biophysical techniques can greatly aid nucleic acid analysis and therapy. Here, we report the design, synthesis and incorporation of an environment-sensitive ribonucleoside analogue, which serves as a two-channel biophysical platform to investigate RNA structure and recognition by fluorescence and 19 F NMR spectroscopy techniques. The nucleoside analogue is based on a 5-fluorobenzofuran-uracil core and its fluorescence and 19 F NMR chemical shifts are highly sensitive to changes in solvent polarity and viscosity. Notably, the modified ribonucleotide and phosphoramidite substrates can be efficiently incorporated into RNA oligonucleotides (ONs) by in vitro transcription and standard solid-phase ON synthesis protocol, respectively. Fluorescence and 19 F readouts of the nucleoside incorporated into model RNA ONs are sensitive to the neighbouring base environment. The responsiveness of the probe was aptly utilized in detecting and quantifying the metal ion-induced conformational change in an internal ribosome entry site RNA motif of hepatitis C virus, which is an important therapeutic target. Taken together, our probe is a good addition to the nucleic acid analysis toolbox with the advantage that it can be used to study nucleic acid conformation and recognition simultaneously by two biophysical techniques.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vyankat A Sontakke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
8
|
Matyašovský J, Tack L, Palágyi A, Kuba M, Pohl R, Kraus T, Güixens-Gallardo P, Hocek M. Nucleotides bearing aminophenyl- or aminonaphthyl-3-methoxychromone solvatochromic fluorophores for the enzymatic construction of DNA probes for the detection of protein-DNA binding. Org Biomol Chem 2021; 19:9966-9974. [PMID: 34747967 DOI: 10.1039/d1ob02098f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized nucleosides bearing aminophenyl- or aminonaphthyl-3-methoxychromone fluorophores attached at position 5 of cytosine or thymine and converted them to nucleoside triphosphates. The fluorophores showed solvatochromic fluorescence with strong fluorescence at 433-457 nm in non-polar solvents and very weak fluorescence at 567 nm in alcohols. The nucleosides and nucleotides also showed only negligible fluorescence in alcohols or water. The triphosphates were substrates for DNA polymerase in the enzymatic synthesis of modified DNA probes that showed only very weak fluorescence in aqueous buffer but a significant light-up and blue shift were observed when they interacted with proteins (histone H3.1 or p53 for double-stranded DNA probes or single-strand binding protein for single-stranded oligonucleotide probes). Hence, nucleotides have good potential in the construction of DNA sensors for studying protein-DNA interactions. The modified dNTPs were also transported into cells using a cyclodextrin-based transporter but they were not incorporated into the genomic DNA.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Laure Tack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Attila Palágyi
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
9
|
Hong SW, Oh GJ, Hwang GT. 2‐Dimethylaminofluorene‐Labeled 2'‐Deoxyuridine as a Turn‐On Fluorescent Probe for i‐Motif DNA. ChemistrySelect 2021. [DOI: 10.1002/slct.202102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seung Woo Hong
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Gon Ji Oh
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|