1
|
Colín-Martínez E, Espino-de-la-Fuente C, Arias C. Age- and Sex-Associated Wnt Signaling Dysregulation is Exacerbated from the Early Stages of Neuropathology in an Alzheimer's Disease Model. Neurochem Res 2024; 49:3094-3104. [PMID: 39167347 PMCID: PMC11449975 DOI: 10.1007/s11064-024-04224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Emerging studies suggest that Wnt signaling is dysregulated in the brains of AD patients, suggesting that this pathway may also contribute to disease progression. However, it remains to be determined whether alterations in the Wnt pathway are the cause or consequence of this disease and which elements of Wnt signaling mainly contribute to the appearance of AD histopathological markers early in disease compared to what occurs during normal aging. The present study aimed to describe the status of several canonical Wnt pathway components and the expression of the AD marker p-tau in the hippocampi of female and male 3xTg-AD mice during disease progression compared to those during normal aging. We analyzed the levels of the canonical Wnt components Wnt7a, Dkk-1, LRP6 and GSK3β as well as the levels of p-tau and BDNF at 3, 6, 9-12 and 18 months of age. We found a gradual increase in Dkk-1 levels during aging prior to Wnt7a and LRP5/6 depletion, which was strongly exacerbated in 3xTg-AD mice even at young ages and correlated with GSK3β activation and p-tau-S202/Thr205 expression. Dkk-1 upregulation, as well as the level of p-tau, was significantly greater in females than in males. Our results suggest that Dkk-1 upregulation is involved in the expression of several features of AD at early stages, which supports the possibility of positively modulating the canonical Wnt pathway as a therapeutic tool to delay this disease at early stages.
Collapse
Affiliation(s)
- Elizabeth Colín-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - César Espino-de-la-Fuente
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| |
Collapse
|
2
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
3
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
4
|
Al-Sammarraie SHA, Ayaz-Güner Ş, Acar MB, Şimşek A, Sınıksaran BS, Bozalan HD, Özkan M, Saraymen R, Dündar M, Özcan S. Mesenchymal stem cells from adipose tissue prone to lose their stemness associated markers in obesity related stress conditions. Sci Rep 2024; 14:19702. [PMID: 39181924 PMCID: PMC11344827 DOI: 10.1038/s41598-024-70127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Obesity is a health problem characterized by large expansion of adipose tissue. During this expansion, genotoxic stressors can be accumulated and negatively affect the mesenchymal stem cells (MSCs) of adipose tissue. Due to the oxidative stress generated by these genotoxic stressors, senescence phenotype might be observed in adipose tissue MSCs. Senescent MSCs lose their proliferations and differentiation properties and secrete senescence-associated molecules to their niche thus triggering senescence for the rest of the tissue. Accumulation of senescent cells in adipose tissue results in decreased tissue regeneration and functional impairment not only in the close vicinity but also in the other tissues. Here we hypothesized that declined tissue regeneration might be associated with loss of stemness markers in MSCs population. We analyzed the expression of several stemness-associated genes of in vitro cultured MSCs originated from adipose tissue of high-fat diet and normal diet mice models. Since the heterogenous MSCs population covers a small percentage of the pluripotent stem cells, which have roles in proliferation and tissue regeneration, we measured the percentage of these cells via TRA-1-60 pluripotent state antigen. Additionally, by conducting a shotgun proteomic approach using LC-MS/MS, whole cell proteome of the adipose tissue MSCs of high-fat diet and normal diet mice were analyzed and identified proteins were evaluated via gene ontology and PPI network analysis. MSCs of obese mice showed senescent phenotype and altered cell cycle distribution due to a hostile environment with oxidative stress in adipose tissue where they reside. Additionally, the number of pluripotent markers expressing cells declined in the MSC population of the high-fat diet mice. Gene expression analysis evidenced the loss of stemness with a decrease in the expression of stemness-associated genes. Of the proteomic comparison of the normal and the high-fat diet group, MSCs revealed that stemness-associated molecules were decreased while inflammation and senescence-associated phenotypes emerged in obese mice MSCs. Our results showed us that the MSCs of adipose tissue may lose their stemness properties due to obesity-associated stress conditions.
Collapse
Affiliation(s)
- Sura Hilal Ahmed Al-Sammarraie
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138, Naples, Italy
| | - Şerife Ayaz-Güner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Mustafa Burak Acar
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138, Naples, Italy
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Ahmet Şimşek
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
| | | | | | - Miray Özkan
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
| | - Recep Saraymen
- Department of Biochemistry, Private Tekden Hospital, Kayseri, Turkey
| | - Munis Dündar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Servet Özcan
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey.
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Bonnet C, Han CS, Deng SX, Zheng JJ. Positive cooperativity in synergistic activation of Wnt proteins. Mol Biol Rep 2024; 51:914. [PMID: 39154310 PMCID: PMC11330945 DOI: 10.1007/s11033-024-09831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Wnt proteins are crucial for embryonic development, stem cell growth, and tissue regeneration. Wnt signaling pathway is activated when Wnt proteins bind to cell membrane receptors. METHODS AND RESULTS We employed a luciferase reporter assay in HEK293STF cells to measure Wnt protein-induced signaling. We observed that Wnt3a uniquely promotes the Wnt/β-catenin pathway through positive cooperativity. Additionally, MFH-ND, a molecular mimic of Wnt ligands, markedly increased Wnt3a-induced signaling in a dose-responsive manner. This suggests that various Wnt ligands can synergistically enhance Wnt pathway activation. CONCLUSIONS The study suggests the likelihood of various Wnt ligands coexisting in a single signalosome on the cell membrane, providing new insights into the complexities of Wnt signaling mechanisms.
Collapse
Affiliation(s)
- Clemence Bonnet
- Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Christiana S Han
- Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jie J Zheng
- Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Bonnet C, Gonzalez S, Deng SX. Limbal stem cell therapy. Curr Opin Ophthalmol 2024; 35:309-314. [PMID: 38813737 DOI: 10.1097/icu.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW To highlight the progress and future direction of limbal stem cell (LSC) therapies for the treatment of limbal stem cell deficiency (LSCD). RECENT FINDINGS Direct LSC transplantation have demonstrated good long-term outcomes. Cultivated limbal epithelial transplantation (CLET) has been an alternative to treat severe to total LSCD aiming to improve the safety and efficacy of the LSC transplant. A prospective early-stage uncontrolled clinical trial shows the feasibility and safety of CLET manufactured under xenobiotic free conditions. Other cell sources for repopulating of the corneal epithelium such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells are being investigated. The first clinical trials of using MSCs showed short-term results, but long-term efficacy seems to be disappointing. A better understanding of the niche function and regulation of LSC survival and proliferation will lead to the development of medical therapies to rejuvenate the residual LSCs found in a majority of eyes with LSCD in vivo. Prior efforts have been largely focused on improving LSC transplantation. Additional effort should be placed on improving the accuracy of diagnosis and staging of LSCD, and implementing standardized outcome measures which enable comparison of efficacy of different LSCD treatments for different severity of LSCD. The choice of LSCD treatment will be customized based on the severity of LSCD in the future. SUMMARY New approaches for managing different stages of LSCD are being developed. This concise review summarizes the progresses in LSC therapies for LSCD, underlying mechanisms, limitations, and future areas of development.
Collapse
Affiliation(s)
- Clemence Bonnet
- Stein Eye Institute, University of California, Los Angeles, California, USA
- Centre de Recherche des Cordeliers, INSERM 1138, Paris Cité Université, AP-HP, Paris, France
| | - Sheyla Gonzalez
- Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
9
|
Huang FY, Wong DKH, Mak LY, Cheung TT, Zhang SS, Chau HT, Hui RWH, Seto WK, Yuen MF. FAT4 loss initiates hepatocarcinogenesis through the switching of canonical to noncanonical WNT signaling pathways. Hepatol Commun 2023; 7:e0338. [PMID: 38055646 PMCID: PMC10984662 DOI: 10.1097/hc9.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Mutation and downregulation of FAT atypical cadherin 4 (FAT4) are frequently detected in HCC, suggesting a tumor suppressor role of FAT4. However, the underlying molecular mechanism remains elusive. METHODS CRISPR-Cas9 system was used to knockout FAT4 (FAT4-KO) in a normal human hepatic cell line L02 to investigate the impact of FAT4 loss on the development of HCC. RNA-sequencing and xenograft mouse model were used to study gene expression and tumorigenesis, respectively. The mechanistic basis of FAT4 loss on hepatocarcinogenesis was elucidated using in vitro experiments. RESULTS We found that FAT4-KO disrupted cell-cell adhesion, induced epithelial-mesenchymal transition, and increased expression of extracellular matrix components. FAT4-KO is sufficient for tumor initiation in a xenograft mouse model. RNA-sequencing of FAT4-KO cells identified PAK6-mediated WNT/β-catenin signaling to promote tumor growth. Suppression of PAK6 led to β-catenin shuttling out of the nucleus for ubiquitin-dependent degradation and constrained tumor growth. Further, RNA-sequencing of amassed FAT4-KO cells identified activation of WNT5A and ROR2. The noncanonical WNT5A/ROR2 signaling has no effect on β-catenin and its target genes (CCND1 and c-Myc) expression. Instead, we observed downregulation of receptors for WNT/β-catenin signaling, suggesting the shifting of β-catenin-dependent to β-catenin-independent pathways as tumor progression depends on its receptor expression. Both PAK6 and WNT5A could induce the expression of extracellular matrix glycoprotein, laminin subunit alpha 4. Laminin subunit alpha 4 upregulation in HCC correlated with poor patient survival. CONCLUSIONS Our data show that FAT4 loss is sufficient to drive HCC development through the switching of canonical to noncanonical Wingless-type signaling pathways. The findings may provide a mechanistic basis for an in-depth study of the two pathways in the early and late stages of HCC for precise treatment.
Collapse
Affiliation(s)
- Fung-Yu Huang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Danny Ka-Ho Wong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Sai-Sai Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Hau-Tak Chau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
10
|
Lin X, Meng X, Lin J. The possible role of Wnt/β-catenin signalling in vitiligo treatment. J Eur Acad Dermatol Venereol 2023; 37:2208-2221. [PMID: 36912722 DOI: 10.1111/jdv.19022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Vitiligo is a common chronic skin disease which has an adverse impact on patients' life. Its pathogenesis is complex, involving autoimmunity and oxidative stress (OS). Autoimmunity leads to the loss of epidermal melanocytes and the formation of the depigmented patches of the disease. Treatment of vitiligo should control the exaggerated immune response to arrest the progress of active disease, and then promote melanocytes to repigmentation. Wnt/β-catenin signalling pathway has been of recent interest in vitiligo. Wnt/β-catenin signalling pathway is downregulated in vitiligo. Upregulation of Wnt/β-catenin signalling possibly control vitiligo autoimmune response by protecting melanocyte from OS damage, inhibiting CD8+ T cell effector cell differentiation and enhancing Treg. Wnt/β-catenin signalling plays a critical role in the melanocyte regeneration by driving the differentiation of melanocyte stem cells (McSCs) into melanocytes. Promoting Wnt/β-catenin signalling can not only arrest the progress of active disease of vitiligo but also promote repigmentation. Some of the main effective therapies for vitiligo are likely to work by activating Wnt/β-catenin signalling. Agents that can enhance the effect of Wnt/β-catenin signalling may become potential candidates for the development of new drugs for vitiligo treatment.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, Pennsylvania, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Bonnet C, González S, Deng SX, Zheng JJ. Wnt activation as a potential therapeutic approach to treat partial limbal stem cell deficiency. Sci Rep 2023; 13:15670. [PMID: 37735479 PMCID: PMC10514048 DOI: 10.1038/s41598-023-42794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by their niche involving numerous signaling pathways, such as Wnt. Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration, and remodeling in adults. It has been shown that a small molecule Wnt mimic could improve LSCs expansion ex vivo. Damage to the LSCs and/or their niche can lead to limbal stem cell deficiency (LSCD), a condition that can cause corneal blindness and is difficult to treat. This study explored if repopulating residual LSCs in partial LSCD through Wnt activation could be a novel therapeutic approach. To mimic LSCD due to a chemical injury, single cultured LSCs were exposed to various concentrations of sodium hydroxide. A progressive loss of the LSCs phenotype was observed: the percentage of p63bright cells and cytokeratin (K)14+ cells decreased while the percentage of K12+ increased. Wnt activation was attained by treating the LSCs with lithium chloride (LiCl) and a small-molecule Wnt mimic, respectively. After 18 h of treatment, LSCs proliferation was increased, and the LSCs phenotype was recovered, while the untreated cells did not proliferate and lost their phenotype. The percentage of p63bright cells was significantly higher in the Wnt mimic-treated cells compared with untreated cells, while the percentage of K12+ cells was significantly lower. These findings suggest that local Wnt activation may rescue LSCs upon alkaline injury.
Collapse
Affiliation(s)
- Clémence Bonnet
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Cordeliers Research Center, Ophthalmology Department, Cochin Hospital, AP-HP, Université Paris Cité, 75005, Paris, France
| | - Sheyla González
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie J Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Shang Y, Piantino M, Zeng J, Louis F, Xie Z, Furihata T, Matsusaki M. Control of blood capillary networks and holes in blood-brain barrier models by regulating elastic modulus of scaffolds. Mater Today Bio 2023; 21:100714. [PMID: 37545563 PMCID: PMC10401288 DOI: 10.1016/j.mtbio.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a type of capillary network characterized by a highly selective barrier, which restricts the transport of substances between the blood and nervous system. Numerous in vitro models of the BBB have been developed for drug testing, but a BBB model with controllable capillary structures remains a major challenge. In this study, we report for the first time a unique method of controlling the blood capillary networks and characteristic holes formation in a BBB model by varying the elastic modulus of a three-dimensional scaffold. The characteristic hole structures are formed by the migration of endothelial cells from the model surface to the interior, which have functions of connecting the model interior to the external environment. The hole depth increased, as the elastic modulus of the fibrin gel scaffold increased, and the internal capillary network length increased with decreasing elastic modulus. Besides, internal astrocytes and pericytes were also found to be important for inducing hole formation from the model surface. Furthermore, RNA sequencing indicated up-regulated genes related to matrix metalloproteinases and angiogenesis, suggesting a relationship between enzymatic degradation of the scaffolds and hole formation. The findings of this study introduce a new method of fabricating complex BBB models for drug assessment.
Collapse
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, Kojimachi, Tokyo, Japan
| | - Fiona Louis
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Dan J, Tan T, Wu M, Gong J, Yang Q, Wang L, Wang P. Lithium chloride promotes diabetic corneal epithelial wound healing by activating the Wnt/β‑catenin signaling pathway. Exp Ther Med 2023; 26:373. [PMID: 37415836 PMCID: PMC10320653 DOI: 10.3892/etm.2023.12072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Corneal epithelial abnormality is a common manifestation of diabetic keratopathy and leads to delayed epithelial wound healing. The Wnt/β-catenin signaling pathway participates in the development, differentiation and stratification of corneal epithelial cells. The present study compared the expression of Wnt/β-catenin signaling pathway related factors, including Wnt7a, β-catenin, cyclin D1 and phosphorylated (p-) glycogen synthase kinase 3 β (Gsk3b) between normal and diabetic mouse corneas, by reverse transcription-quantitative PCR, western blotting and immunofluorescence staining. It was found that the expression of the Wnt/β-catenin signaling pathway related factors was downregulated in diabetic corneas. Upon corneal epithelium scraping, the wound healing rate was significantly increased in diabetic mice after topical treatment with lithium chloride. After further investigation, significantly upregulated levels of Wnt7a, β-catenin, cyclin D1 and p-Gsk3b were found in the diabetic group 24 h after treatment, accompanied by β-catenin nuclear translocation observed by immunofluorescence staining. These results suggest that active Wnt/β-catenin pathway can promote diabetic corneal epithelial wound healing.
Collapse
Affiliation(s)
- Jing Dan
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China, Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Ting Tan
- Department of Ophthalmology, Yiling Hospital, Yichang, Hubei 443100, P.R. China
| | - Man Wu
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China, Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jin Gong
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China, Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Qingguo Yang
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China, Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Linling Wang
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China, Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Ping Wang
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China, Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
14
|
Kim Y, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Nör JE, Bae MK. Naringenin stimulates osteogenic/odontogenic differentiation and migration of human dental pulp stem cells. J Dent Sci 2023; 18:577-585. [PMID: 37021242 PMCID: PMC10068380 DOI: 10.1016/j.jds.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background/purpose Naringenin, a naturally occurring flavanone in citrus fruits, regulates bone formation by bone marrow-derived mesenchymal stem cells. The purpose of this study was to characterize the effects of naringenin on some biological behaviors of human dental pulp stem cells (HDPSCs). Materials and methods HDPSCs were cultured in osteogenic differentiation medium and osteo/odontogenic differentiation and mineralization were analyzed by alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining. The migration of HDPSCs was evaluated by transwell chemotactic migration assays and scratch wound healing migration assay. Using tooth slice/scaffold model, we assessed the in vivo odontogenic differentiation potential of HDPSCs. Results We have demonstrated that naringenin increases the osteogenic/odontogenic differentiation of HDPSCs through regulation of osteogenic-related proteins and the migratory ability of HDPSCs through stromal cell derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis. Moreover, naringenin promotes the expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) in HDPSCs seeded on tooth slice/scaffolds that are subcutaneously implanted into immunodeficient mice. Conclusion Our present study suggests that naringenin promotes migration and osteogenic/odontogenic differentiation of HDPSCs and may serve as a promising candidate in dental tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| | - Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| | - Soo-Kyung Bae
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| |
Collapse
|
15
|
Bonnet C, Ruiz M, Gonzalez S, Tseng CH, Bourges JL, Behar-Cohen F, Deng SX. Single mRNA detection of Wnt signaling pathway in the human limbus. Exp Eye Res 2023; 229:109337. [PMID: 36702232 DOI: 10.1016/j.exer.2022.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023]
Abstract
Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by their close microenvironment. It has been shown that Wnt signaling pathway is crucial for LSCs regulation. Previous differential gene profiling studies confirmed the preferential expression of specific Wnt ligands (WNT2, WNT6, WNT11, WNT16) and Wnt inhibitors (DKK1, SFRP5, WIF1, FRZB) in the limbal region compared to the cornea. Among all frizzled receptors, frizzled7 (Fzd7) was found to be preferentially expressed in the basal limbal epithelium. However, the exact localization of Wnt signaling molecules-producing cells in the limbus remains unknown. The current study aims to evaluate the in situ spatial expression of these 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7. Wnt ligands, DKK1, and Fzd7 expression were scattered within the limbal epithelium, at a higher abundance in the basal layer than the superficial layer. SFRP5 expression was diffuse among the limbal epithelium, whereas WIF1 and FRZB expression was clustered at the basal limbal epithelial layer corresponding to the areas of high levels of Fzd7 expression. Quantitation of the fluorescence intensity showed that all 4 Wnt ligands, 3 Wnt inhibitors (WIF1, DKK1, FRZB), and Fzd7 were highly expressed at the basal layer of the limbus, then in a decreasing gradient toward the superficial layer (P < 0.05). The expression levels of all 4 Wnt ligands, FRZB, and Fzd7 in the basal epithelial layer were higher in the limbus than the central cornea (P < 0.05). All 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7 were also highly expressed in the limbal stroma immediately below the epithelium but not in the corneal stroma (P < 0.05). In addition, Fzd7 had a preferential expression in the superior limbus compared to other limbal quadrants (P < 0.05). Taken together, the unique expression patterns of the Wnt molecules in the limbus suggests the involvement of both paracrine and autocrine effects in LSCs regulation, and a fine balance between Wnt activators and inhibitors to govern LSC fate.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Centre de Recherche des Cordeliers, Paris University, And Cornea Departement, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Maxime Ruiz
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sheyla Gonzalez
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chi-Hong Tseng
- David Geffen School of Medicine, Division of General Internal Medicine and Health Services Research, University of California, Los Angeles, USA
| | - Jean-Louis Bourges
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Centre de Recherche des Cordeliers, Paris University, And Cornea Departement, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Centre de Recherche des Cordeliers, Paris University, And Cornea Departement, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Ishaque A, Salim A, Simjee SU, Khan I, Adli DSH. Alpha terpineol directs bone marrow mesenchymal stem cells toward neuronal lineage through regulation of wnt signaling pathway. Cell Biochem Funct 2023; 41:223-233. [PMID: 36651266 DOI: 10.1002/cbf.3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Central nervous system anomalies give rise to neuropathological consequences with immense damage to the neuronal tissues. Cell based therapeutics have the potential to manage several neuropathologies whereby the differentiated cells are explored for neuronal regeneration. The current study analyzes the effect of a bioactive compound, alpha terpineol (AT) on the differentiation of rat bone marrow derived mesenchymal stem cells (BM-MSCs) toward neuronal lineage, and explores regulation of differentiation process through the study of Wnt pathway mediators. BM-MSCs were cultured and characterized based on their surface markers and tri-lineage differentiation. Safe dose of AT as optimized by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide assay, was used for the treatment of MSCs. Treated cells were analyzed for the neuronal, astroglial and germ layer transition markers at the gene and protein levels, by quantitative polymerase chain reaction and immunocytochemistry, respectively. Temporal expression of Wnt pathway genes was assessed during the course of neuronal differentiation. AT treated group showed significant upregulation of neuron specific (NSE, MAP2, Tau, Nestin, and NefL) and astroglial (GFAP) genes with positive expression of late neuronal markers. Germ layer transition analysis showed the overexpression of ectodermal markers (NCAM, Nestin, and Pax6), whereas endodermal (AFP, MixL1, and Sox17), and mesodermal (Mesp1 and T Brachyury) markers were also found to be upregulated. Wnt signaling pathway was activated during the initial phase (30 min) of differentiation, which later was downregulated at 1, 3, and 5 h. AT efficiently induces neuronal differentiation of BM-MSCs by regulating Wnt signaling. Overexpression of both early and late neuronal markers indicate their neuro-progenitor state and thus can be utilized as a promising approach in cellular therapeutics to treat various neurodegenerative ailments. In addition, exploration of the molecular pathways may be helpful to understand the mechanism of cell-based neuronal regeneration.
Collapse
Affiliation(s)
- Aisha Ishaque
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shabana Usman Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | |
Collapse
|
17
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
18
|
Pyruvate Kinase M2 Promotes Hair Regeneration by Connecting Metabolic and Wnt/β-Catenin Signaling. Pharmaceutics 2022; 14:pharmaceutics14122774. [PMID: 36559274 PMCID: PMC9781674 DOI: 10.3390/pharmaceutics14122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression pattern and activity of PKM2 during the depilation-induced anagen progression in mice. We found that TEPP-46, a selective activator of PKM2, enhanced hair re-growth and proliferation of HFSCs. PKM2 expression was increased via up-regulation of Wnt/β-catenin signaling, which is involved in hair regeneration. Moreover, a combined treatment with KY19382, a small molecule that activates Wnt/β-catenin signaling, and TEPP-46 significantly enhanced hair re-growth and wound-induced hair follicle neogenesis (WIHN). These results indicate that simultaneous activation of the PKM2 and Wnt/β-catenin signaling could be a potential strategy for treating alopecia patients.
Collapse
|
19
|
Cucu I, Nicolescu MI, Busnatu ȘS, Manole CG. Dynamic Involvement of Telocytes in Modulating Multiple Signaling Pathways in Cardiac Cytoarchitecture. Int J Mol Sci 2022; 23:5769. [PMID: 35628576 PMCID: PMC9143034 DOI: 10.3390/ijms23105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart's mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Ștefan-Sebastian Busnatu
- Department of Cardiology-“Bagdasar Arseni” Emergency Clinical Hospital, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 041915 Bucharest, Romania
| | - Cătălin Gabriel Manole
- Department of Cellular & Molecular Biology and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Laboratory of Ultrastructural Pathology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
20
|
Arredondo SB, Valenzuela-Bezanilla D, Santibanez SH, Varela-Nallar L. Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells 2022; 40:630-640. [PMID: 35446432 DOI: 10.1093/stmcls/sxac027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| |
Collapse
|
21
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|