1
|
Jiang D, Zhang Y, Qiao X, Xiao J, Liu K, Li J, Liu J. Selective N=S Coupling Reactions of N-Methoxy Arylamides and Sulfoxides Catalyzed by Iron Salt. ACS OMEGA 2024; 9:37044-37051. [PMID: 39246465 PMCID: PMC11375812 DOI: 10.1021/acsomega.4c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
An iron-catalyzed selective N=S coupling of N-methoxy amides and sulfoxides has been developed and was found to be a highly efficient method for the synthesis of N-acyl sulfoximines. Electron-donating as well as electron-withdrawing groups on the phenyl ring are tolerated, and even sensitive substituents are compatible. The current catalytic transformation was conducted under an air atmosphere and can be easily scaled up to a gram scale with a catalyst loading of only 1 mol %. In this case, both coupling partners are used in their native forms, thus obviating prior functionalization and activation.
Collapse
Affiliation(s)
- Dandan Jiang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Yingzhen Zhang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Xin Qiao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Jun Xiao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Kunming Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Juanhua Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Jinbiao Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| |
Collapse
|
2
|
Su S, Zhang Y, Liu P, Wink DJ, Lee D. Intramolecular Carboxyamidation of Alkyne-Tethered O-Acylhydroxamates through Formation of Fe(III)-Nitrenoids. Chemistry 2024; 30:e202303428. [PMID: 38050744 DOI: 10.1002/chem.202303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the β-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
3
|
Guan M, Hou M, Tang S, Cheng G, Zhu X, Zhao YH, Tang X, Zhou H, Qiu G. Iron-catalyzed β-hydroxymethylative carbonylation of styrene under photo-irradiation. Chem Commun (Camb) 2023; 59:13309-13312. [PMID: 37859505 DOI: 10.1039/d3cc03919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
This study describes an iron-catalyzed divergent oxidation of styrene into β-hydroxylmethylketone and ketone under photo-irradiation. This divergence is ascribed to the use of styrene with various substituents. More importantly, methanol is oxidized into formaldehyde in the reaction and serves as a C1 synthon. Mechanism investigations show that the reaction is initiated by oxidative SET to transfer styrene into the cation radical. The reaction pathway undergoes HAT and β-hydride elimination as well as a concerted cyclization. Particularly, several drug-like molecules, such as melperone analogue, lenperone analogue, and haloperidol analogue, are synthesized. In addition, this method is also applicable to the synthesis of natural product (R)-atomoxetine.
Collapse
Affiliation(s)
- Meng Guan
- College of Chemistry and Chemical Engineering, Hunan University of Sciences and Technology, Xiangtan 4111201, Hunan, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Ming Hou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Shuwang Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guang Cheng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Xinyu Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yun-Hui Zhao
- College of Chemistry and Chemical Engineering, Hunan University of Sciences and Technology, Xiangtan 4111201, Hunan, China.
| | - Ximei Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
4
|
Tufano E, Lee E, Barilli M, Casali E, Oštrek A, Jung H, Morana M, Kang J, Kim D, Chang S, Zanoni G. Iridium Acylnitrenoid-Initiated Biomimetic Cascade Cyclizations: Stereodefined Access to Polycyclic δ-Lactams. J Am Chem Soc 2023. [PMID: 37926946 DOI: 10.1021/jacs.3c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.
Collapse
Affiliation(s)
- Eleonora Tufano
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Euijae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Matteo Barilli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andraž Oštrek
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Marta Morana
- Department of Earth Science, University of Firenze, Via G. La Pira 4, 50121 Firenze, Italy
| | - Jihye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
5
|
Nozawa-Kumada K, Hayashi M, Kwon E, Shigeno M, Yada A, Kondo Y. Copper-Catalyzed Intramolecular Olefinic C(sp 2)-H Amidation for the Synthesis of γ-Alkylidene- γ-lactams. Molecules 2023; 28:6682. [PMID: 37764458 PMCID: PMC10537769 DOI: 10.3390/molecules28186682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we report the copper-catalyzed dehydrogenative C(sp2)-N bond formation of 4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,β-unsaturated- or α,β-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.
Collapse
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Masahito Hayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
| | - Akira Yada
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| |
Collapse
|
6
|
Zhong P, Wang YC, Liu JB, Zhang L, Luo N. K 2CO 3-promoted synthesis of amides from 1-aryl-2,2,2-trifluoroethanones and amines under mild conditions. RSC Adv 2023; 13:18160-18164. [PMID: 37333725 PMCID: PMC10269829 DOI: 10.1039/d3ra03329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
A base-promoted amidation of 1-aryl-2,2,2-trifluoroethanones with amines via Haller-Bauer reaction has been developed. In this reaction, the direct transformation of 1-aryl-2,2,2-trifluoroethanones into amides via C(O)-C bond cleavage occurs without the use of any stoichiometric chemical oxidants or transition-metal catalysts. A series of primary and secondary amines are shown to be compatible with this transformation, and several pharmaceutical molecules were synthesized.
Collapse
Affiliation(s)
- Pinyong Zhong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Chao Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Jin-Biao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Linjun Zhang
- Jiangxi Province Zhonggantou Survey and Design Co., Ltd. Nanchang 330029 China
| | - Nianhua Luo
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 China
| |
Collapse
|
7
|
Gao Y, Li H, Zhao Y, Hu XQ. Nitrene transfer reaction with hydroxylamine derivatives. Chem Commun (Camb) 2023; 59:1889-1906. [PMID: 36661267 DOI: 10.1039/d2cc06318b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent progress on catalytic nitrene transfer reactions with hydroxylamine derivatives as prevalent precursors is summarized in this highlight. The salient features of these N-O derived nitrene transfer reagents are that they are readily available, bench-stable, and can be facilely activated by a range of transition metal-catalysts under mild conditions. The application of these reagents in transition metal-catalysis has led to many new amidation or amination reactions, such as C-H insertions and aziridination of olefins. These reagents have also been applied in difunctionalisation of unsaturated bonds, dearomative amination of indoles, and formation of N-X bonds. Moreover, the recent achievements in photocatalysis and enzyme catalysis further emphasize the importance of these appealing reagents. This highlight provides an overview of these reactions reported in recent years. Challenges and potential opportunities for future developments are also discussed.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.,Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Haixia Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
8
|
Su S, Wu T, Xia Y, Wink DJ, Lee D. Cycloisomerization of Alkyne-Tethered N-Acyloxycarbamates to 2-(3H)Oxazolones through Nitrenoid-Mediated Carboxyamidation. Chemistry 2023; 29:e202203371. [PMID: 36628950 DOI: 10.1002/chem.202203371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The cycloisomerization of alkyne-tethered N-benzoyloxycarbamates to 2-(3H)oxazolones is described. Two catalytic systems are tailored for intramolecular 5-exo-alkyne carboxyamidation and concomitant alkene isomerization. PtCl2 /CO (5 mol%, toluene, 100 °C) promotes both carboxyamidation and alkene isomerization but has a limited substrate scope. On the other hand, FeCl3 (5 mol%, CH3 CN, 100 °C) promotes carboxyamidation effectively but a cocatalyst is required for the exocyclic alkene isomerization. Thus, a two-step one-pot protocol has been developed for a broader reaction scope, which involves FeCl3 -catalyzed carboxyamidation and base-induced alkene isomerization. Crossover experiments suggest that these reactions proceed mainly through a mechanism involving acylnitrenoid intermediates rather than carbenoid intermediates.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Tongtong Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
9
|
Sha Y, Bai J, Li M, Gao W, Yang Q, Sun J, Sun S. Base-Promoted 5- exo- dig Cyclization of o-Alkynylamides or 2-En-4-ynamides with CO 2 toward Fully Substituted Acrylates. Org Lett 2022; 24:5715-5720. [PMID: 35921535 DOI: 10.1021/acs.orglett.2c02123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A base-promoted sequential cyclization and carboxylation of o-alkynylamides or 2-en-4-ynamides with CO2 has been achieved with high efficiency, stereoselectivity, and regioselectivity. This approach begins with 5-exo-dig cyclization followed by trapping the resulting vinyl anion with CO2 and MeI, which provides a convenient access to diverse cyclic and fully substituted acrylates with CO2 as the carboxylic source.
Collapse
Affiliation(s)
- Yu Sha
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wanxu Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Nitrenium ion-based ipso-addition and ortho-cyclization of arenes under photo and iron dual-catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Deng X, Wang Y, Liu JB, Wan C, Luo N. Synthesis of N-methoxy-1‑phosphoryloxy imidates through a copper-catalyzed cross-dehydrogenative coupling of N-methoxylamides with phosphites. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Hou M, Zhang Z, Lai X, Zong Q, Jiang X, Guan M, Qi R, Qiu G. Photoredox/Iron Dual-Catalyzed Insertion of Acyl Nitrenes into C-H Bonds. Org Lett 2022; 24:4114-4118. [PMID: 35666621 DOI: 10.1021/acs.orglett.2c01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, the use of N-acyloxybenzamides as efficient acyl nitrene precursors under photoredox/iron dual catalysis is reported. The resulting acyl nitrenes could be captured by various types of C-H bonds and S- or P-containing molecules. Mechanism investigations suggested that the formation of the acyl nitrene from the N-acyloxybenzamide occurs by a photoredox process, and it is believed that in this redox process oxidative N-H bond cleavage of the N-acyloxybenzamide occurs prior to reductive N-O bond cleavage of the N-acyloxybenzamide.
Collapse
Affiliation(s)
- Ming Hou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhide Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Qianshou Zong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China
| | - Meng Guan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Rui Qi
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
13
|
Shi Z, Li N, Wang WZ, Lu HK, Yuan Y, Li Z, Ye KY. Electrochemical 5- exo-dig aza-cyclization of 2-alkynylbenzamides toward 3-hydroxyisoindolinone derivatives. Org Biomol Chem 2022; 20:4320-4323. [PMID: 35593414 DOI: 10.1039/d2ob00637e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of biologically relevant 3-hydroxyisoindolinones from readily available 2-alkynylbenzamides is an appealing synthetic approach. However, such kinds of compounds preferably undergo O-attacked 5-exo-dig/6-endo-dig cyclizations. Herein, we report an electrochemically generated amidyl radical proceeding via a highly selective N-attacked 5-exo-dig radical cyclization to form 3-hydroxyisoindolinone derivatives. This reaction features simple operation, good selectivity, and broad substrate scope. Moreover, gram-scale preparation and synthetic elaborations imply the potential applicability of this protocol for the synthesis of diverse isoindolinone derivatives.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hao-Kuan Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
A Review of High-Energy Density Lithium-Air Battery Technology: Investigating the Effect of Oxides and Nanocatalysts. J CHEM-NY 2022. [DOI: 10.1155/2022/2762647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vehicles that require a lot of electricity, such as electric vehicles, it is necessary to use high-energy batteries. Among the developed batteries, the lithium-ion battery has shown better performance. This battery has an energy density of 10 equal to that of a lithium-ion battery and uses air oxygen as the active material of the cathode and anode like a lithium-ion battery made of lithium metal. The cathode used in these batteries must have special properties such as strong catalytic activity and high conductivity, and nanotechnology has greatly helped to improve the materials used in the cathode of lithium-air batteries. The importance of proper catalyst distribution and the relationship between the oxide product and the catalyst and the indirect effect of the ORR catalyst on the OER reaction is not present in the fuel cell. The maximum capacity of lithium-air battery theory using graphene under optimal electron conduction conditions and the experimental maximum obtained for graphene by optimizing the structure geometry, examples of structural engineering using carbon fiber and carbon nanotubes in cathode fabrication with the ability to perform the reaction properly while providing space for lithium oxide placement, are examined. This article describes the mechanism of this battery, and its components are examined. The challenges of using this battery and the application of nanotechnology to solve these challenges are also discussed.
Collapse
|
15
|
Ren M, Wang YC, Ren S, Huang K, Liu JB, Qiu G. Metal‐Enabled Romance of Nitrene with Alkyne: Beyond Gold Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miaofeng Ren
- JiangXi University of Science and Technology Chemistry CHINA
| | - Yu-Chao Wang
- JiangXi University of Science and Technology Chemistry CHINA
| | - Shangfeng Ren
- JiangXi University of Science and Technology Chemistry CHINA
| | - Keke Huang
- JiangXi University of Science and Technology Chemistry CHINA
| | - Jin-Biao Liu
- JiangXi University of Science and Technology faculty of Materials Metallurgy and Chemistry No.86,Hongqi Ave. 341000 Ganzhou CHINA
| | | |
Collapse
|
16
|
Zhao D, Li Y, Xu M, Li Z, Zhang H, Yu L. Identification of sulfur gases (environmental pollution) by BeO fullerenes: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Iron-catalyzed cross-coupling of N‑methoxy amides and arylboronic acids for the synthesis of N-aryl amides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
DFT exploration of sensor performances of pristine and metal-doped graphdiyne monolayer to acetaminophen drug in terms of charge transfer and bandgap changes. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Liu S, Zhu P, Zou S, Ebrahimiasl S. Theoretical evaluation of central ring doped Hexa-peri-hexabenzocoronene as Gamma-butyrolactone drug sensors. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Wu H, Chen X, Sun N, Sanchez-Mendoza A. Recent developments in the synthesis of N-aryl sulfonamides. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1936060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huizhen Wu
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Xuesong Chen
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Nabo Sun
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | | |
Collapse
|
22
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
23
|
Affiliation(s)
- Qun Li
- College of Food and Biology, Changchun Polytechnic, Changchun, China
| | - Liguo Han
- College of Food and Biology, Changchun Polytechnic, Changchun, China
| | - Li Zhao
- Nursing College of Chifeng University, Chifeng, Inner Mongolia, China
| | - Yue Hou
- Changchun University of Science and Technology, Changchun, China
| | - Ranjit Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
24
|
|
25
|
Kareem RT, Azizi B, Asnaashariisfahani M, Ebadi A, Vessally E. Vicinal halo-trifluoromethylation of alkenes. RSC Adv 2021; 11:14941-14955. [PMID: 35424045 PMCID: PMC8698610 DOI: 10.1039/d0ra06872a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Both trifluoromethyl and halide groups are widely found in medicinally and pharmaceutically important compounds and, moreover, organohalides are commonly used as versatile intermediates in synthetic organic chemistry. Due to their prevalence and easy accessibility, alkene halo-trifluoromethylation provides a convenient way to install these valuable functionalities in complex targets. In this review, we summarize recent advances and achievements in this fast-growing research field. For clarity, the reactions were classified according to the type of halogen atom.
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina Hamadan Iran
| | - Bayan Azizi
- College of Health Sciences, University of Human Development Sulaimaniyah Kurdistan region of Iraq
| | | | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|