1
|
Smyrnov V, Waser J. Photocatalytic Decarboxylative Functionalization of Cyclopropenes via Cyclopropenium Cation Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404265. [PMID: 38802318 DOI: 10.1002/anie.202404265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A photocatalytic decarboxylative functionalization of cyclopropenes is reported. Starting from a broad range of redox-active ester-substituted cyclopropenes, cyclopropenylphthalimides can be synthesized in the absence of a nucleophile. Alternatively, different carbon and heteroatom nucleophiles can be introduced. The transformation proceeds most probably through the formation of an aromatic cyclopropenium cation, followed by trapping with the nucleophiles.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Chowdhury R, Elek GZ, Meana-Baamonde B, Mendoza A. Modular Synthesis of (Borylmethyl)silanes through Orthogonal Functionalization of a Carbon Atom. Org Lett 2023; 25:1935-1940. [PMID: 36898045 PMCID: PMC10043938 DOI: 10.1021/acs.orglett.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
(Borylmethyl)trimethylsilanes are important building blocks in organic synthesis displaying a unique reactivity. Yet, the synthesis of more advanced derivatives is limited by the advanced silicon intermediates required for their preparation. Herein, a one-pot synthesis of (borylmethyl)silanes is developed, sourced on available alkyl-, aryl-, alkoxy-, aryloxy-, and silyl-hydrosilane materials. The privileged reactivity of N-hydroxyphthalimidyl diazoacetate (NHPI-DA) in Si-H insertion and α-silyl redox-active esters in different decarboxylative borylation reactions are scrutinized.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
| | - Gábor Zoltán Elek
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Beatriz Meana-Baamonde
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
- Institute of Molecular Science (ICMol), University of Valencia, 46980 Paterna, Spain
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691-Stockholm, Sweden
- Institute of Molecular Science (ICMol), University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
3
|
Baeza Cinco MÁ, Wu G, Telser J, Hayton TW. Structural and Spectroscopic Characterization of a Zinc-Bound N-Oxyphthalimide Radical. Inorg Chem 2022; 61:13250-13255. [PMID: 35972238 DOI: 10.1021/acs.inorgchem.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermolysis of a 1:1:1 mixture of MeLH (MeL = {(2,6-iPr2C6H3)NC(Me)}2CH), N-hydroxyphthalimide (HOPth), and diethylzinc in toluene at 77 °C provided [MeLZn(OPth)] (1) in good yield after workup. The subsequent reduction of 1 with 1.3 equiv of KC8 and 1 equiv of 2.2.2-cryptand, in tetrahydrofuran, provided [K(2.2.2-cryptand)][MeLZn(OPth)] (2) in 74% yield after workup. Characterization of 2 via X-ray crystallography and electron paramagnetic resonance spectroscopy reveals the presence of an S = 1/2 radical on the N-oxyphthalimide ligand. Importantly, these data represent the first structural and spectroscopic confirmation of the redox activity of a metal-bound N-oxyphthalimide fragment, expanding the range of structurally characterized redox-active ligands.
Collapse
Affiliation(s)
- Miguel Á Baeza Cinco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue. Chicago, Illinois 60605-1394, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| |
Collapse
|
4
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Planas F, Costantini M, Montesinos-Magraner M, Himo F, Mendoza A. Combined Experimental and Computational Study of Ruthenium N-Hydroxyphthalimidoyl Carbenes in Alkene Cyclopropanation Reactions. ACS Catal 2021; 11:10950-10963. [PMID: 34504736 PMCID: PMC8419840 DOI: 10.1021/acscatal.1c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Indexed: 01/14/2023]
Abstract
A combined experimental-computational approach has been used to study the cyclopropanation reaction of N-hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand. The calculations show that the migratory insertion reaction yields an unconsidered ruthenium complex that is catalytically competent for both the dimerization and cyclopropanation, and its relevance is assessed experimentally. The stereoselectivity of the reaction is argued to stem from an intricate balance between the various mechanistic scenarios.
Collapse
Affiliation(s)
| | | | - Marc Montesinos-Magraner
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|