1
|
Chan HT, Oliveira ASF, Schofield CJ, Mulholland AJ, Duarte F. Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease. JACS AU 2023; 3:1767-1774. [PMID: 37384148 PMCID: PMC10262681 DOI: 10.1021/jacsau.3c00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) plays an essential role in the coronavirus lifecycle by catalyzing hydrolysis of the viral polyproteins at specific sites. Mpro is the target of drugs, such as nirmatrelvir, though resistant mutants have emerged that threaten drug efficacy. Despite its importance, questions remain on the mechanism of how Mpro binds its substrates. Here, we apply dynamical nonequilibrium molecular dynamics (D-NEMD) simulations to evaluate structural and dynamical responses of Mpro to the presence and absence of a substrate. The results highlight communication between the Mpro dimer subunits and identify networks, including some far from the active site, that link the active site with a known allosteric inhibition site, or which are associated with nirmatrelvir resistance. They imply that some mutations enable resistance by altering the allosteric behavior of Mpro. More generally, the results show the utility of the D-NEMD technique for identifying functionally relevant allosteric sites and networks including those relevant to resistance.
Collapse
Affiliation(s)
- H. T.
Henry Chan
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - A. Sofia F. Oliveira
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Fernanda Duarte
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
2
|
Shao Q, Xiong M, Li J, Hu H, Su H, Xu Y. Unraveling the catalytic mechanism of SARS-CoV-2 papain-like protease with allosteric modulation of C270 mutation using multiscale computational approaches. Chem Sci 2023; 14:4681-4696. [PMID: 37181765 PMCID: PMC10171076 DOI: 10.1039/d3sc00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Papain-like protease (PLpro) is a promising therapeutic target against SARS-CoV-2, but its restricted S1/S2 subsites pose an obstacle in developing active site-directed inhibitors. We have recently identified C270 as a novel covalent allosteric site for SARS-CoV-2 PLpro inhibitors. Here we present a theoretical investigation of the proteolysis reaction catalyzed by the wild-type SARS-CoV-2 PLpro as well as the C270R mutant. Enhanced sampling MD simulations were first performed to explore the influence of C270R mutation on the protease dynamics, and sampled thermodynamically favorable conformations were then submitted to MM/PBSA and QM/MM MD simulations for thorough characterization of the protease-substrate binding and covalent reactions. The disclosed proteolysis mechanism of PLpro, as characterized by the occurrence of proton transfer from the catalytic C111 to H272 prior to the substrate binding and with deacylation being the rate-determining step of the whole proteolysis process, is not completely identical to that of the 3C-like protease, another key cysteine protease of coronaviruses. The C270R mutation alters the structural dynamics of the BL2 loop that indirectly impairs the catalytic function of H272 and reduces the binding of the substrate with the protease, ultimately showing an inhibitory effect on PLpro. Together, these results provide a comprehensive understanding at the atomic level of the key aspects of SARS-CoV-2 PLpro proteolysis, including the catalytic activity allosterically regulated by C270 modification, which is crucial to the follow-up inhibitor design and development.
Collapse
Affiliation(s)
- Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiameng Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Hangchen Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
3
|
Omage FB, Madabeni A, Tucci AR, Nogara PA, Bortoli M, Rosa ADS, Neuza Dos Santos Ferreira V, Teixeira Rocha JB, Miranda MD, Orian L. Diphenyl Diselenide and SARS-CoV-2: in silico Exploration of the Mechanisms of Inhibition of Main Protease (M pro) and Papain-like Protease (PL pro). J Chem Inf Model 2023; 63:2226-2239. [PMID: 36952618 PMCID: PMC10091420 DOI: 10.1021/acs.jcim.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The SARS-CoV-2 pandemic has prompted global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro) and the papain-like protease (PLpro) are essential for viral replication and are key targets for therapeutic development. In this work, we investigate the mechanisms of SARS-CoV-2 inhibition by diphenyl diselenide (PhSe)2 which is an archetypal model of diselenides and a renowned potential therapeutic agent. The in vitro inhibitory concentration of (PhSe)2 against SARS-CoV-2 in Vero E6 cells falls in the low micromolar range. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations [level of theory: SMD-B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ] are used to inspect non-covalent inhibition modes of both proteases via π-stacking and the mechanism of covalent (PhSe)2 + Mpro product formation involving the catalytic residue C145, respectively. The in vitro CC50 (24.61 μM) and EC50 (2.39 μM) data indicate that (PhSe)2 is a good inhibitor of the SARS-CoV-2 virus replication in a cell culture model. The in silico findings indicate potential mechanisms of proteases' inhibition by (PhSe)2; in particular, the results of the covalent inhibition here discussed for Mpro, whose thermodynamics is approximatively isoergonic, prompt further investigation in the design of antiviral organodiselenides.
Collapse
Affiliation(s)
- Folorunsho Bright Omage
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Andrea Madabeni
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Via Marzolo 1, Padova 35131, Italy
| | - Amanda Resende Tucci
- Laboratório de Vírus Respiratórios e Do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
| | - Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Marco Bortoli
- Institute of Computational Chemistry and Catalysis (IQCC) and Department of Chemistry, Faculty of Sciences, University of Girona, C/M. A. Capmany 69, Girona 17003, Spain
| | - Alice Dos Santos Rosa
- Laboratório de Vírus Respiratórios e Do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
| | - Vivian Neuza Dos Santos Ferreira
- Laboratório de Vírus Respiratórios e Do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Milene Dias Miranda
- Laboratório de Vírus Respiratórios e Do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-210, Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Via Marzolo 1, Padova 35131, Italy
| |
Collapse
|
4
|
Zhou Y, Gammeltoft KA, Ryberg LA, Pham LV, Tjørnelund HD, Binderup A, Duarte Hernandez CR, Fernandez-Antunez C, Offersgaard A, Fahnøe U, Peters GHJ, Ramirez S, Bukh J, Gottwein JM. Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. SCIENCE ADVANCES 2022; 8:eadd7197. [PMID: 36542720 PMCID: PMC9770952 DOI: 10.1126/sciadv.add7197] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karen Anbro Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Line Abildgaard Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Corresponding author.
| |
Collapse
|
5
|
Al Adem K, Ferreira JC, Fadl S, Rabeh WM. pH profiles of 3-chymotrypsin-like protease (3CLpro) from SARS-CoV-2 elucidate its catalytic mechanism and a histidine residue critical for activity. J Biol Chem 2022; 299:102790. [PMID: 36509143 PMCID: PMC9733303 DOI: 10.1016/j.jbc.2022.102790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
3-Chymotrypsin-like protease (3CLpro) is a promising drug target for coronavirus disease 2019 and related coronavirus diseases because of the essential role of this protease in processing viral polyproteins after infection. Understanding the detailed catalytic mechanism of 3CLpro is essential for designing effective inhibitors of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular dynamics studies have suggested pH-dependent conformational changes of 3CLpro, but experimental pH profiles of SARS-CoV-2 3CLpro and analyses of the conserved active-site histidine residues have not been reported. In this work, pH-dependence studies of the kinetic parameters of SARS-CoV-2 3CLpro revealed a bell-shaped pH profile with 2 pKa values (6.9 ± 0.1 and 9.4 ± 0.1) attributable to ionization of the catalytic dyad His41 and Cys145, respectively. Our investigation of the roles of conserved active-site histidines showed that different amino acid substitutions of His163 produced inactive enzymes, indicating a key role of His163 in maintaining catalytically active SARS-CoV-2 3CLpro. By contrast, the H164A and H172A mutants retained 75% and 26% of the activity of WT, respectively. The alternative amino acid substitutions H172K and H172R did not recover the enzymatic activity, whereas H172Y restored activity to a level similar to that of the WT enzyme. The pH profiles of H164A, H172A, and H172Y were similar to those of the WT enzyme, with comparable pKa values for the catalytic dyad. Taken together, the experimental data support a general base mechanism of SARS-CoV-2 3CLpro and indicate that the neutral states of the catalytic dyad and active-site histidine residues are required for maximum enzyme activity.
Collapse
|
6
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:3823. [PMID: 34771379 PMCID: PMC8587287 DOI: 10.3390/polym13213823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miroslava Nedyalkova
- Department of Inorganic Chemistry, University of Sofia “St. Kl. Okhridski”, 1164 Sofia, Bulgaria;
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
8
|
Kneller DW, Zhang Q, Coates L, Louis JM, Kovalevsky A. Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCRJ 2021; 8:973-979. [PMID: 34804549 PMCID: PMC8562657 DOI: 10.1107/s2052252521010113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 06/06/2023]
Abstract
SARS-CoV-2 emerged at the end of 2019 to cause an unprecedented pandemic of the deadly respiratory disease COVID-19 that continues to date. The viral main protease (Mpro) is essential for SARS-CoV-2 replication and is therefore an important drug target. Understanding the catalytic mechanism of Mpro, a cysteine protease with a catalytic site comprising the noncanonical Cys145-His41 dyad, can help in guiding drug design. Here, a 2.0 Å resolution room-temperature X-ray crystal structure is reported of a Michaelis-like complex of Mpro harboring a single inactivating mutation C145A bound to the octapeptide Ac-SAVLQSGF-CONH2 corresponding to the nsp4/nsp5 autocleavage site. The peptide substrate is unambiguously defined in subsites S5 to S3' by strong electron density. Superposition of the Michaelis-like complex with the neutron structure of substrate-free Mpro demonstrates that the catalytic site is inherently pre-organized for catalysis prior to substrate binding. Induced fit to the substrate is driven by P1 Gln binding in the predetermined subsite S1 and rearrangement of subsite S2 to accommodate P2 Leu. The Michaelis-like complex structure is ideal for in silico modeling of the SARS-CoV-2 Mpro catalytic mechanism.
Collapse
Affiliation(s)
- Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
| |
Collapse
|
9
|
Chan HTH, Moesser MA, Walters RK, Malla TR, Twidale RM, John T, Deeks HM, Johnston-Wood T, Mikhailov V, Sessions RB, Dawson W, Salah E, Lukacik P, Strain-Damerell C, Owen CD, Nakajima T, Świderek K, Lodola A, Moliner V, Glowacki DR, Spencer J, Walsh MA, Schofield CJ, Genovese L, Shoemark DK, Mulholland AJ, Duarte F, Morris GM. Discovery of SARS-CoV-2 M pro peptide inhibitors from modelling substrate and ligand binding. Chem Sci 2021; 12:13686-13703. [PMID: 34760153 PMCID: PMC8549791 DOI: 10.1039/d1sc03628a] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.
Collapse
Affiliation(s)
- H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Marc A Moesser
- Department of Statistics, University of Oxford 24-29 St Giles' Oxford OX1 3LB UK
| | - Rebecca K Walters
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tika R Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tobias John
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Helen M Deeks
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tristan Johnston-Wood
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Victor Mikhailov
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - William Dawson
- RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Petra Lukacik
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - C David Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Takahito Nakajima
- RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Katarzyna Świderek
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castello Spain
| | - Alessio Lodola
- Food and Drug Department, University of Parma Parco Area delle Scienze, 27/A 43124 Parma Italy
| | - Vicent Moliner
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castello Spain
| | - David R Glowacki
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - James Spencer
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Martin A Walsh
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Luigi Genovese
- Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim 38000 Grenoble France
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Garrett M Morris
- Department of Statistics, University of Oxford 24-29 St Giles' Oxford OX1 3LB UK
| |
Collapse
|
10
|
Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. J Mol Graph Model 2021; 110:108042. [PMID: 34653812 PMCID: PMC8491126 DOI: 10.1016/j.jmgm.2021.108042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
We have studied the non-covalent interaction between PF-07321332 and SARS-CoV-2 main protease at the atomic level using a computational approach based on extensive molecular dynamics simulations with explicit solvent. PF-07321332, whose chemical structure has been recently disclosed, is a promising oral antiviral clinical candidate with well-established anti-SARS-CoV-2 activity in vitro. The drug, currently in phase III clinical trials in combination with ritonavir, relies on the electrophilic attack of a nitrile warhead to the catalytic cysteine of the protease. Nonbonded interaction between the inhibitor and the residues of the binding pocket, as well as with water molecules on the protein surface, have been characterized using two different force fields and the two possible protonation states of the main protease catalytic dyad HIS41-CYS145. When the catalytic dyad is in the neutral state, the non-covalent binding is likely to be stronger. Molecular dynamics simulations seems to lend support for an inhibitory mechanism in two steps: a first non-covalent addition with the dyad in neutral form and then the formation of the thiolate-imidazolium ion pair and the ligand relocation for finalising the electrophilic attack.
Collapse
|