1
|
Shimauchi D, Yatabe T, Ikesue Y, Kajiwara Y, Koide T, Ando T, Yoon KS, Nakai H, Ogo S. Storing electrons from H 2 for transfer to CO 2, all at room temperature. Chem Commun (Camb) 2023. [PMID: 38018815 DOI: 10.1039/d3cc05285k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
We present an Ir complex that extracts electrons from H2 at room temperature and stores them as a H2-derived energy carrier (H2EC) at room temperature. Furthermore, we demonstrate that this complex reduces CO2 to a metal-CO22- species at room temperature, and present the first electrospray ionisation mass spectrum for this compound.
Collapse
Affiliation(s)
- Daiki Shimauchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Yatabe
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuka Ikesue
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuu Kajiwara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taro Koide
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuya Ando
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hidetaka Nakai
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Ahmad W, Koley P, Dwivedi S, Lakshman R, Shin YK, van Duin ACT, Shrotri A, Tanksale A. Aqueous phase conversion of CO 2 into acetic acid over thermally transformed MIL-88B catalyst. Nat Commun 2023; 14:2821. [PMID: 37198184 DOI: 10.1038/s41467-023-38506-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Sustainable production of acetic acid is a high priority due to its high global manufacturing capacity and numerous applications. Currently, it is predominantly synthesized via carbonylation of methanol, in which both the reactants are fossil-derived. Carbon dioxide transformation into acetic acid is highly desirable to achieve net zero carbon emissions, but significant challenges remain to achieve this efficiently. Herein, we report a heterogeneous catalyst, thermally transformed MIL-88B with Fe0 and Fe3O4 dual active sites, for highly selective acetic acid formation via methanol hydrocarboxylation. ReaxFF molecular simulation, and X-ray characterisation results show a thermally transformed MIL-88B catalyst consisting of highly dispersed Fe0/Fe(II)-oxide nanoparticles in a carbonaceous matrix. This efficient catalyst showed a high acetic acid yield (590.1 mmol/gcat.L) with 81.7% selectivity at 150 °C in the aqueous phase using LiI as a co-catalyst. Here we present a plausible reaction pathway for acetic acid formation reaction via a formic acid intermediate. No significant difference in acetic acid yield and selectivity were noticed during the catalyst recycling study up to five cycles. This work is scalable and industrially relevant for carbon dioxide utilisation to reduce carbon emissions, especially when green methanol and green hydrogen are readily available in future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
| | - Paramita Koley
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
| | - Swarit Dwivedi
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajan Lakshman
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
| | - Yun Kyung Shin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan
| | - Akshat Tanksale
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
3
|
Ogo S, Yatabe T, Tome T, Takenaka R, Shiota Y, Kato K. Safe, One-Pot, Homogeneous Direct Synthesis of H 2O 2. J Am Chem Soc 2023; 145:4384-4388. [PMID: 36798970 PMCID: PMC9983002 DOI: 10.1021/jacs.2c13149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Hydrogen peroxide is an environmentally friendly oxidizing agent but current synthetic methods are wasteful. This is a result of the high flammability of H2/O2 mixtures and/or the requirement for cocatalysts. In this paper, we report the synthesis of H2O2 by means of a homogeneous catalyst, which allows a safe, one-pot synthesis in water, using only H2 and O2. This catalyst is capable of removing electrons from H2, storing them for the reduction of O2, and then permitting the protonation of the reduced oxygen to H2O2. The turnover number (TON) is 910 under an H2/O2 (95/5) atmosphere (1.9 MPa) for 12 h at 23 °C, which is the highest of any homogeneous catalyst. Furthermore, we propose a reaction mechanism based on two crystal structures.
Collapse
Affiliation(s)
- Seiji Ogo
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan,International
Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan,Center
for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan,
| | - Takeshi Yatabe
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan,International
Institute for Carbon-Neutral Energy Research (WPI Academy I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan,Center
for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tamon Tome
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Riko Takenaka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute
for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Kato
- Center
for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan,Mitsubishi
Gas Chemical Company Inc., Tokyo 100-8324, Japan
| |
Collapse
|
4
|
Ogo S, Yatabe T, Nakai H. Insights from hydrogenase model studies on C–C bond forming reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Yatabe T, Futakuchi S, Miyazawa K, Shimauchi D, Takahashi Y, Yoon KS, Nakai H, Ogo S. Reductive C(sp 3)-C(sp 3) homo-coupling of benzyl or allyl halides with H 2 using a water-soluble electron storage catalyst. RSC Adv 2021; 11:39450-39454. [PMID: 35492457 PMCID: PMC9044531 DOI: 10.1039/d1ra08596d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
This paper reports the first example of a reductive C(sp3)-C(sp3) homo-coupling of benzyl/allyl halides in aqueous solution by using H2 as an electron source {turnover numbers (TONs) = 0.5-2.3 for 12 h}. This homo-coupling reaction, promoted by visible light, is catalysed by a water-soluble electron storage catalyst (ESC). The reaction mechanism, and four requirements to make it possible, are also described.
Collapse
Affiliation(s)
- Takeshi Yatabe
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Small Molecule Energy, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Sayaka Futakuchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Keishi Miyazawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Daiki Shimauchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yukina Takahashi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Small Molecule Energy, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Small Molecule Energy, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
6
|
Yatabe T, Tome T, Takahashi Y, Matsumoto T, Yoon KS, Nakai H, Ogo S. C-H Arylation of Benzene with Aryl Halides using H 2 and a Water-Soluble Rh-Based Electron Storage Catalyst. Chemistry 2021; 27:17326-17330. [PMID: 34636099 DOI: 10.1002/chem.202102735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/12/2022]
Abstract
This paper reports the first example of C-H arylation of benzene under mild conditions, using H2 as an electron source {turnover numbers (TONs)=0.7-2.0 for 24 h}. The reaction depends on a Rh-based electron storage catalyst, and proceeds at room temperature and in aqueous solution. Furthermore, the H2 is inactive during the radical transfer step, greatly reducing unwanted side reactions.
Collapse
Affiliation(s)
- Takeshi Yatabe
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tamon Tome
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukina Takahashi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|