1
|
Taki M, Kuwahara M, Li C, Tomoda N, Miyashita N, Kan T, Yang J. ARCaDia: single-round screening of a DNA-type targeted covalent binder possessing a latent warhead. Chem Commun (Camb) 2024; 60:14964-14967. [PMID: 39533973 DOI: 10.1039/d4cc04594g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A covalent binder for a target protein was obtained by a direct single-round screening of a latent-warhead-modified DNA library via affinity/reactivity-based co-selection of aptameric deoxyribonucleic acid (ARCaDia), followed by a top k-mer analysis. The optimal position of the conjugated warhead on the selected aptamer was simultaneously identified.
Collapse
Affiliation(s)
- Masumi Taki
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Chaohui Li
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Naoko Tomoda
- Department of GI Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoyuki Miyashita
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Department of Biological Systems Engineering, Graduate School of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Tetsuo Kan
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Jay Yang
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Department of GI Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
2
|
Lan T, Peng C, Yao X, Chan RST, Wei T, Rupanya A, Radakovic A, Wang S, Chen S, Lovell S, Snyder SA, Bogyo M, Dickinson BC. Discovery of Thioether-Cyclized Macrocyclic Covalent Inhibitors by mRNA Display. J Am Chem Soc 2024; 146:24053-24060. [PMID: 39136646 DOI: 10.1021/jacs.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalization─installation of a covalent warhead─with mRNA display and showcases its application in targeted covalent ligand discovery.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Peng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiyuan Yao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel Shu Ting Chan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tongyao Wei
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anuchit Rupanya
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksandar Radakovic
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, United States
| |
Collapse
|
3
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
4
|
Bolding JE, Martín‐Gago P, Rajabi N, Gamon LF, Hansen TN, Bartling CRO, Strømgaard K, Davies MJ, Olsen CA. Aryl Fluorosulfate Based Inhibitors That Covalently Target the SIRT5 Lysine Deacylase. Angew Chem Int Ed Engl 2022; 61:e202204565. [PMID: 36130196 PMCID: PMC9828517 DOI: 10.1002/anie.202204565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/12/2023]
Abstract
The sirtuin enzymes are a family of lysine deacylases that regulate gene transcription and metabolism. Sirtuin 5 (SIRT5) hydrolyzes malonyl, succinyl, and glutaryl ϵ-N-carboxyacyllysine posttranslational modifications and has recently emerged as a vulnerability in certain cancers. However, chemical probes to illuminate its potential as a pharmacological target have been lacking. Here we report the harnessing of aryl fluorosulfate-based electrophiles as an avenue to furnish covalent inhibitors that target SIRT5. Alkyne-tagged affinity-labeling agents recognize and capture overexpressed SIRT5 in cultured HEK293T cells and can label SIRT5 in the hearts of mice upon intravenous injection of the compound. This work demonstrates the utility of aryl fluorosulfate electrophiles for targeting of SIRT5 and suggests this as a means for the development of potential covalent drug candidates. It is our hope that these results will serve as inspiration for future studies investigating SIRT5 and general sirtuin biology in the mitochondria.
Collapse
Affiliation(s)
- Julie E. Bolding
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Pablo Martín‐Gago
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Luke F. Gamon
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3DK-2200CopenhagenDenmark
| | - Tobias N. Hansen
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Christian R. O. Bartling
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Michael J. Davies
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3DK-2200CopenhagenDenmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| |
Collapse
|
5
|
Cabalteja CC, Sachdev S, Cheloha RW. Rapid Covalent Labeling of Membrane Proteins on Living Cells Using a Nanobody-Epitope Tag Pair. Bioconjug Chem 2022; 33:1867-1875. [PMID: 36107739 PMCID: PMC10200341 DOI: 10.1021/acs.bioconjchem.2c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic molecules that form a covalent bond upon binding to a targeted biomolecule (proximity-induced reactivity) are the subject of intense biomedical interest for the unique pharmacological properties imparted by irreversible binding. However, off-target covalent labeling and the lack of molecules with sufficient specificity limit more widespread applications. We describe the first example of a cross-linking platform that uses a synthetic peptide epitope and a single domain antibody (or nanobody) pair to form a covalent linkage rapidly and specifically. The rate of the cross-linking reaction between peptide and nanobody is faster than most other biocompatible cross-linking reactions, and it can be used to label live cells expressing receptor-nanobody fusions. The rapid kinetics of this system allowed us to probe the consequences on signaling for ligand cross-linking to the A2A-adenosine receptor. Our method may be generally useful to site-specifically link synthetic molecules to receptors on mammalian cell surfaces.
Collapse
Affiliation(s)
- Chino C. Cabalteja
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD USA 20894
| | - Shivani Sachdev
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD USA 20894
| | - Ross W. Cheloha
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD USA 20894
| |
Collapse
|
6
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|