1
|
Rao C, Zhang T, Huang H. Dialkylation of CF 2 unit enabled by cobalt electron-shuttle catalysis. Nat Commun 2024; 15:7924. [PMID: 39256384 PMCID: PMC11387730 DOI: 10.1038/s41467-024-51532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
The incorporation of difluoromethylene (CF2) group into chemical molecules often imparts desirable properties such as lipophilicity, binding affinity, and thermal stability. Consequently, the increasing demand for gem-difluoroalkylated compounds in drug discovery and materials science has continued to drive the development of practical methods for their synthesis. However, traditional synthetic methods such as deoxofluorination often confront challenges including complicated substrate synthesis sequences and poor functional group compatibility. In this context, we herein report a metal electron-shuttle catalyzed, modular synthetic methodology for difluoroalkylated compounds by assembling two C(sp3) fragments across CF2 unit in a single step. The approach harnesses a difluoromethylene synthon as a biradical linchpin, achieving the construction of two C(sp3)-CF2 bonds through radical addition to two different π-unsaturated molecules. This catalytic protocol is compatible with broad range of coupling partners including diverse olefins, iminiums, and hydrazones, supporting endeavors in the efficient construction of C(sp3)-rich difluoroalkylated molecules.
Collapse
Affiliation(s)
- Changqing Rao
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianze Zhang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
2
|
Kim S, Kim H. Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF 2H) 2(DMPU) 2 as Both Radical and Anion Source. J Am Chem Soc 2024; 146:22498-22508. [PMID: 39079933 DOI: 10.1021/jacs.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.
Collapse
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Guo S, Li Y, Li QH, Zheng K. Electrochemical desulfurative formation of C-N bonds through selective activation of inert C(sp 3)-S bonds. Chem Commun (Camb) 2024; 60:2501-2504. [PMID: 38343365 DOI: 10.1039/d4cc00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this study, we introduce an efficient, metal-free electrocatalytic desulfurative protocol for forming C-N bonds by selectively activating inert C(sp3)-S bonds of alkyl thioethers. This method offers a straightforward and environmentally friendly approach for modification of heterocyclic compounds from readily accessible thioethers. Preliminary mechanistic investigations suggest that the reaction proceeds via a carbocation intermediate. Furthermore, successful synthesis on a 10-gram scale was achieved in a continuous flow electrochemical reactor.
Collapse
Affiliation(s)
- Shaopeng Guo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yujun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Qing-Han Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China.
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
4
|
Tian Y, Guo D, Zheng L, Yang S, Zhang N, Fu W, Li Z. Electrochemical Radical Tandem Difluoroethylation/Cyclization of Unsaturated Amides to Access MeCF 2-Featured Indolo/Benzoimidazo [2,1- a]Isoquinolin-6(5 H)-ones. Molecules 2024; 29:973. [PMID: 38474485 DOI: 10.3390/molecules29050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A metal-free electrochemical oxidative difluoroethylation of 2-arylbenzimidazoles was accomplished, which provided an efficient strategy for the synthesis of MeCF2-containing benzo[4,5]imidazo[2,1-a]-isoquinolin-6(5H)-ones. In addition, the method also enabled the efficient construction of various difluoroethylated indolo[2,1-a]isoquinolin-6(5H)-ones. Notably, this electrochemical synthesis protocol proceeded well under mild conditions without metal catalysts or exogenous additives/oxidants added.
Collapse
Affiliation(s)
- Yunfei Tian
- Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Dongyu Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Luping Zheng
- Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Shaolu Yang
- Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Ningning Zhang
- Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Weijun Fu
- Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Zhu Y, Qiu YH, Dai XK, Luo W, Peng X, Chen Z, Yu D. Difluoromethylated Difunctionalization of Alkenes under Visible Light. J Org Chem 2024; 89:2525-2537. [PMID: 38300156 DOI: 10.1021/acs.joc.3c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Difluoromethylated compounds usually act as bioisosteres for alcohol functional groups and show unique physicochemical and biological properties. The cyano-difluoromethylation of alkenes using 5-((difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole as a CF2H radical difluoromethyl precursor was developed to afford nitriles including a CF2H group. A low-cost, stable, easily handled 5-((difluoromethyl)sulfonyl)-1-methyl-1H-tetrazole (DFSMT) was synthesized and applied as the radical CF2H reagent. Using DFSMT as the radical CF2H precursor, the oxyl-difluoromethylation of alkenes was developed to obtain difluoromethylated ether products. All of the reactions showed good functional group tolerability. Initial mechanistic experiments indicated that the CF2H radical was involved as the key active intermediate.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yan-Hua Qiu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiao-Kang Dai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Sciences of Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
6
|
Xie F, Han F, Yan Y, Li H, Hao J, Jing L, Han P. Difluoromethylation-Carboxylation and -Deuteration of Alkenes Triggered by Electroreduction of Difluoromethyltriphenylphosphonium Bromide. J Org Chem 2023. [PMID: 38056421 DOI: 10.1021/acs.joc.3c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
It is significant to develop novel difluoromethylation methods because of the important roles of difluoromethyl groups in the medicinal chemistry and material industries. Here, we developed a novel difluoromethylation-carboxylation and difluoromethylation-deuteration method triggered by a difluoromethyl radical generated by electroreduction of stable and easily available difluoromethyltriphenylphosphonium bromide. Various molecules containing difluoromethyl and carboxyl or deuterium groups can be synthesized through this method. The establishment of this method will provide an alternative to radical difluoromethylation reactions.
Collapse
Affiliation(s)
- Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
7
|
Kuzmin J, Röckl J, Schwarz N, Djossou J, Ahumada G, Ahlquist M, Lundberg H. Electroreductive Desulfurative Transformations with Thioethers as Alkyl Radical Precursors. Angew Chem Int Ed Engl 2023; 62:e202304272. [PMID: 37342889 DOI: 10.1002/anie.202304272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Thioethers are highly prevalent functional groups in organic compounds of natural and synthetic origin but remain remarkably underexplored as starting materials in desulfurative transformations. As such, new synthetic methods are highly desirable to unlock the potential of the compound class. In this vein, electrochemistry is an ideal tool to enable new reactivity and selectivity under mild conditions. Herein, we demonstrate the efficient use of aryl alkyl thioethers as alkyl radical precursors in electroreductive transformations, along with mechanistic details. The transformations proceed with complete selectivity for C(sp3 )-S bond cleavage, orthogonal to that of established transition metal-catalyzed two-electron routes. We showcase a hydrodesulfurization protocol with broad functional group tolerance, the first example of desulfurative C(sp3 )-C(sp3 ) bond formation in Giese-type cross-coupling and the first protocol for electrocarboxylation of synthetic relevance with thioethers as starting materials. Finally, the compound class is shown to outcompete their well-established sulfone analogues as alkyl radical precursors, demonstrating their synthetic potential for future desulfurative transformations in a one-electron manifold.
Collapse
Affiliation(s)
- Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Johannes Röckl
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Nils Schwarz
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jonas Djossou
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Guillermo Ahumada
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mårten Ahlquist
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|
8
|
Wei Z, Zheng W, Wan X, Hu J. Copper-Catalyzed Enantioselective Difluoromethylation-Alkynylation of Olefins by Solving the Dilemma between Acidities and Reduction Potentials of Difluoromethylating Agents. Angew Chem Int Ed Engl 2023; 62:e202308816. [PMID: 37466977 DOI: 10.1002/anie.202308816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Molecules containing a difluoromethyl group or a propargylic stereocenter are widely used in pharmaceuticals and agrochemicals, and 1,2-functionalization of olefins is an important method for introducing the two groups into molecules simultaneously. The construction of the propargylic stereocenter with terminal alkynes usually requires bases. However, difluoromethylating agents with high reduction potentials often decompose in the presence of bases because of their acidities, and those with low reduction potentials are stable but difficult to undergo the desired single electron transfer (SET) reduction. Using the linear relationship between reduction potential differences (ΔE) and Hammett substituent constants (σ) of difluoromethyl aryl sulfones, we solved the dilemma between acidities and reduction potentials of difluoromethylating agents. Herein, we report the first enantioselective difluoromethylation-alkynylation of olefins with difluoromethyl 4-chlorophenyl sulfone with high enantioselectivity (>90 % ee). We also extended this asymmetric fluoroalkylation-alkynylation reaction with other fluoroalkyl sulfones, which enabled efficient installation of trifluoromethyl, difluoroalkyl, difluorobenzyl, (benzenesulfonyl)-difluoromethyl and monofluoromethyl groups into products.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Weiqin Zheng
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
9
|
Pan S, Chen F, Zhang Y, Shao L, Chu L. Nickel-Catalyzed Markovnikov-Selective Hydrodifluoromethylation of Alkynes Using BrCF 2 H. Angew Chem Int Ed Engl 2023; 62:e202305426. [PMID: 37293885 DOI: 10.1002/anie.202305426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
A Markovnikov-selective hydrodifluoromethylation of alkynes with BrCF2 H via nickel catalysis is described. This protocol proceeds via a migratory insertion of nickel hydride to alkyne followed by a CF2 H-coupling, enabling straightforward access to diverse branched CF2 H-alkenes with high efficiency and exclusive regioselectivity. The mild condition applies to a wide array of aliphatic and aryl alkynes with good functional group compatibility. Mechanistic studies are presented to support the proposed pathway.
Collapse
Affiliation(s)
- Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Liang Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Fu XP, Yuan Y, Jha A, Levin N, Giltrap AM, Ren J, Mamalis D, Mohammed S, Davis BG. Stereoretentive Post-Translational Protein Editing. ACS CENTRAL SCIENCE 2023; 9:405-416. [PMID: 36968537 PMCID: PMC10037454 DOI: 10.1021/acscentsci.2c00991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 05/16/2023]
Abstract
Chemical post-translational methods allow convergent side-chain editing of proteins without needing to resort to genetic intervention. Current approaches that allow the creation of constitutionally native side chains via C-C bond formation, using off-protein carbon-centered C· radicals added to unnatural amino acid radical acceptor (SOMOphile, singly occupied molecular orbital (SOMO)) "tags" such as dehydroalanine, are benign and wide-ranging. However, they also typically create epimeric mixtures of d/l-residues. Here, we describe a light-mediated desulfurative method that, through the creation and reaction of stereoretained on-proteinl-alanyl Cβ· radicals, allows Cβ-Hγ, Cβ-Oγ, Cβ-Seγ, Cβ-Bγ, and Cβ-Cγ bond formation to flexibly generate site-selectively edited proteins with full retention of native stereochemistry under mild conditions from a natural amino acid precursor. This methodology shows great potential to explore protein side-chain diversity and function and in the construction of useful bioconjugates.
Collapse
Affiliation(s)
- Xia-Ping Fu
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Yizhi Yuan
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Ajay Jha
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Nikita Levin
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Andrew M. Giltrap
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Jack Ren
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Dimitrios Mamalis
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Shabaz Mohammed
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Benjamin G. Davis
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
11
|
Ramkumar N, Baumane L, Zacs D, Veliks J. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202219027. [PMID: 36692216 DOI: 10.1002/anie.202219027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
A simple process for the oxy-monofluoromethylation of alkenes is described. In combination with visible-light copper(I) photoredox catalysis, an easily accessible iodine(III) reagent containing monofluoroacetoxy ligands serves as a powerful source of a monofluoromethyl (CH2 F) radical, enabling the step economical synthesis of γ-fluoro-acetates from a broad range of olefinic substrates under mild conditions. Applications to late-stage diversification of alkenes derived from complex molecules, amino acids and the synthesis of fluoromethylated heterocycles are also demonstrated.
Collapse
Affiliation(s)
- Nagarajan Ramkumar
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Larisa Baumane
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| |
Collapse
|
12
|
Tian Y, Zheng L, Wang Z, Li Z, Fu W. Metal-Free Electrochemical Oxidative Difluoroethylation/Cyclization of Olefinic Amides To Construct Difluoroethylated Azaheterocycles. J Org Chem 2023; 88:1875-1883. [PMID: 36669162 DOI: 10.1021/acs.joc.2c02579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new strategy of electrochemical oxidative difluoroethylation to generate difluoroethyl radical with sodium difluoroethylsulfinate (DFES-Na) has been reported for the first time. The method allows quick access to a variety of valuable difluoroethylated azaheterocycles including oxindoles and isoquinoline-1,3-diones via radical tandem difluoroethylation/cyclization in moderate to good yields. The electrochemical cyclopropyldifluoromethylation of N-arylacrylamides also works well using this strategy. Moreover, radical capture and cyclic voltammetry (CV) experiments are also carried out to determine the proposed mechanism.
Collapse
Affiliation(s)
- Yunfei Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Luping Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| |
Collapse
|
13
|
Gutiérrez-Bonet Á, Liu W. Synthesis of Alkyl Fluorides and Fluorinated Unnatural Amino Acids via Photochemical Decarboxylation of α-Fluorinated Carboxylic Acids. Org Lett 2023; 25:483-487. [PMID: 36652608 DOI: 10.1021/acs.orglett.2c04144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leveraging α-fluoroalkyl or fluorobenzyl radicals to introduce fluorinated motifs allows for the rapid preparation of fluorine-containing building blocks. Herein, we report the generation of α-fluoroalkyl or fluorobenzyl radicals from readily available α-fluorocarboxylic acids under mild reaction conditions and their utilization in the Giese-type addition on Michael acceptors and dehydroamino acids, resulting in the preparation of mono- and difluorinated Michael addition adducts and unnatural fluorinated amino acids.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Bonet
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wenbin Liu
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
14
|
Zheng J, Wu Y, Cao D, Song S, Yang Y, Huang L, Chen D. Direct Difluoromethylation of 2-Arylidenindan-1,3-dione by Photoredox-catalyzed Radical Addition. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Shigenaga S, Shibata H, Tagami K, Kanbara T, Yajima T. Eosin Y-Catalyzed Visible-Light-Induced Hydroperfluoroalkylation of Electron-Deficient Alkenes. J Org Chem 2022; 87:14923-14929. [PMID: 36200531 DOI: 10.1021/acs.joc.2c01827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eosin Y-catalyzed hydroperfluoroalkylation of electron-deficient alkenes is described herein. The reaction proceeded smoothly under visible light irradiation and selectively afforded a hydroperfluoroalkylated product. Various perfluoroalkyl bromides and electron-deficient olefins can be used in this reaction, and all chemicals required for this reaction are safe and readily available.
Collapse
Affiliation(s)
- Satsuki Shigenaga
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Haruko Shibata
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Koto Tagami
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
16
|
Yang ZX, Lai L, Chen J, Yan H, Ye KY, Chen FE. Stereoselective electrochemical carboxylation of α,β-unsaturated sulfones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wei Z, Lou Z, Ni C, Zhang W, Hu J. Visible-light-promoted S-trifluoromethylation of thiophenols with trifluoromethyl phenyl sulfone. Chem Commun (Camb) 2022; 58:10024-10027. [PMID: 35983787 DOI: 10.1039/d2cc03921d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethyl phenyl sulfone is traditionally a nucleophilic trifluoromethylating agent. Herein, we report the first example of the use of trifluoromethyl phenyl sulfone as a trifluoromethyl radical precursor. Arylthiolate anions can form electron donor-acceptor (EDA) complexes with trifluoromethyl phenyl sulfone, which can undergo an intramolecular single electron transfer (SET) reaction under visible light irradiation, thus realizing the S-trifluoromethylation of thiophenols under photoredox catalyst-free conditions. Similar S-perfluoroethylation and S-perfluoro-iso-propylation of thiophenols are also achieved using the corresponding perfluoroalkyl phenyl sulfones.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| | - Zhengzhao Lou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
18
|
Kim S, Hwang KH, Park HG, Kwak J, Lee H, Kim H. Radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Commun Chem 2022; 5:96. [PMID: 36697867 PMCID: PMC9814520 DOI: 10.1038/s42004-022-00697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023] Open
Abstract
Due to its superior ability in controlling pharmaceutical activity, the installation of difluoromethyl (CF2H) functionality into organic molecules has been an area of intensive research. In this context, difluoromethylation of C-C π bonds mediated by a CF2H radical have been pursued as a central strategy to grant access to difluoromethylated hydrocarbons. However, early precedents necessitate the generation of oxidative chemical species that can limit the generality and utility of the reaction. We report here the successful implementation of radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Preliminary mechanistic investigations suggest that the key distinction of the present strategy originates from the reconciliation of multiple redox processes under highly reducing electrochemical conditions. The reaction conditions can be chosen based on the electronic properties of the alkenes of interest, highlighting the hydrodifluoromethylation of both unactivated and activated alkenes. Notably, the reaction delivers geminal (bis)difluoromethylated products from alkynes in a single step by consecutive hydrodifluoromethylation, granting access to an underutilized 1,1,3,3-tetrafluoropropan-2-yl functional group. The late-stage hydrodifluoromethylation of densely functionalized pharmaceutical agents is also presented.
Collapse
Affiliation(s)
- Seonyoung Kim
- grid.255649.90000 0001 2171 7754Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Keon Ha Hwang
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Hyeong Gyu Park
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Jaesung Kwak
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyuk Lee
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyunwoo Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
19
|
Claraz A, Masson G. Recent Advances in C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS ORGANIC & INORGANIC AU 2022; 2:126-147. [PMID: 36855458 PMCID: PMC9954344 DOI: 10.1021/acsorginorgau.1c00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds is one of the major research goals of synthetic chemists. Electrochemistry is commonly considered to be an appealing means to drive redox reactions in a safe and sustainable fashion and has been utilized for C-C bond-forming reactions. Compared to anodic oxidative methods, which have been extensively explored, cathodic processes are much less investigated, whereas it can pave the way to alternative retrosynthetic disconnections of target molecules and to the discovery of new transformations. This review provides an overview on the recent achievements in the construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via cathodic reactions since 2017. It includes electrochemical reductions and convergent paired electrolyses.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
20
|
Claraz A, Allain C, Masson G. Electroreductive Cross-Coupling of Trifluoromethyl Alkenes and Redox Active Esters for the Synthesis of Gem-Difluoroalkenes. Chemistry 2021; 28:e202103337. [PMID: 34761845 DOI: 10.1002/chem.202103337] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Abstract
An electroreductive access to gem-difluoroalkenes has been developed through the decarboxylative/defluorinative coupling of N-hydroxyphtalimides esters and α-trifluoromethyl alkenes. The electrolysis is performed under very simple reaction conditions in an undivided cell using cheap carbon graphite electrodes. This metal-free transformation features broad scope with good to excellent yields. Tertiary, secondary as well as primary alkyl radicals could be easily introduced. α-aminoacids L-aspartic and L-glutamic acid-derived redox active esters were good reactive partners furnishing potentially relevant gem-difluoroalkenes. In addition, it has been demonstrated that our electrosynthetic approach toward the synthesis of gem-difluoroalkenes could use an easily prepared Kratitsky salt as alkyl radical precursor via a deaminative/defluorinative carbofunctionalization of trifluoromethylstyrene.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|