1
|
Xu HL, Zhu M, Sung HHY, Williams ID, Lin Z, Zhang C, Sun J. Organocatalytic Asymmetric Synthesis of o-Carboranyl Amines. J Am Chem Soc 2025; 147:3692-3701. [PMID: 39808207 DOI: 10.1021/jacs.4c16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy. Herein we have achieved the first catalytic asymmetric N-alkylation of o-carboranyl amine, providing general access to diverse secondary o-carboranyl amines with high efficiency and enantioselectivity under mild conditions. For the first time, asymmetric organocatalysis was introduced to carborane chemistry. Key to the success is the use of in situ generated (naphtho-)quinone methides as the alkylating reagents and suitable chiral acid catalysts. This protocol is also applicable to the asymmetric S-alkylation of 1-SH-o-C2B10H11. Control experiments and kinetic studies provided important insights into the reaction mechanism, which likely involves rate-determining generation of the quinone methide followed by fast and enantio-determining nucleophilic addition.
Collapse
Affiliation(s)
- Hong-Lei Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Minghui Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Herman H Y Sung
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ian D Williams
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhenyang Lin
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Charge-Compensated Derivatives of Nido-Carborane. INORGANICS 2023. [DOI: 10.3390/inorganics11020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review summarizes data on the main types of charge-compensated nido-carborane derivatives. Compared with organic analogs, onium derivatives of nido-carborane have increased stability due to the stabilizing electron-donor action of the boron cage. Charge-compensated derivatives are considered according to the type of heteroatom bonded to a boron atom.
Collapse
|
3
|
Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022; 28:e202200811. [PMID: 35420234 PMCID: PMC9320968 DOI: 10.1002/chem.202200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/15/2022]
Abstract
A robust method for the selective labeling of peptides via manganese(I) catalysis was devised to achieve the C-2 alkenylation of tryptophan containing peptides with 1-ethynyl-o-carboranes. The manganese-catalyzed C-H activation was accomplished with high catalytic efficiency, and featured low toxicity, high functional group tolerance and excellent E-stereoselectivity. This approach unravels a promising tool for the assembly of o-carborane with structurally complex peptides of relevance to applications in boron neutron capture therapy.
Collapse
Affiliation(s)
- Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
4
|
Sun C, Lu JY, Lu J. Pd-Catalyzed Selective B(6)-H Phosphorization of nido-Carboranes via Cascade Deboronation/B-H Activation from closo-Carboranes. Inorg Chem 2022; 61:9623-9630. [PMID: 35700190 DOI: 10.1021/acs.inorgchem.2c00993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient Pd-catalyzed regioselective B(6)-H phosphorization of nido-carboranes via cascade deboronation/B-H activation of readily available C-substituted o-carboranes with various phosphines using 3-methylpyridine or isoquinoline as a directing group in combination with pyridine ligands has been developed, affording unprecedented B(6)-phosphinated nido-carborane derivatives with high selectivity in a simple one-pot process.
Collapse
Affiliation(s)
- Chaofan Sun
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Ju-You Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| |
Collapse
|
5
|
Kang Y, Wang B, Nan R, Li Y, Zhu Z, Xiao XQ. Cyclic Carbonate Synthesis from Epoxides and CO 2 Catalyzed by Aluminum-Salen Complexes Bearing a nido-C 2B 9 Carborane Ligand. Inorg Chem 2022; 61:8806-8814. [PMID: 35653698 DOI: 10.1021/acs.inorgchem.2c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active and well-designed Schiff base ligands are considered "privileged ligands". The so-called salen ligands, i.e., the tetradentate [O, N, N, O] bis-Schiff base ligands, have also found broad applications in many homogeneous catalytic reactions. Modification of the salen ligands has concentrated on altering the substituents in the phenolate rings and variations in the diamine backbones. Herein, o-carborane-supported salen ligands (2) were designed and prepared. A series of aluminum-salen complexes (3·(sol)2), which were supported by the nido-C2B9 carborane anions, were synthesized. These Al(III) complexes showed high activities (TOF up to 1500 h-1) in catalyzing the cycloaddition of epoxides and CO2 at atmospheric pressure and near room temperature. Complexes 3·(sol)2 are one of the rare examples of Al-based catalysts capable of promoting cycloaddition at 1 bar pressure of CO2. Density functional theory (DFT) studies combined with the catalytic results reveal that the catalytic cycles occur on two axial sites of the Al(III) center.
Collapse
Affiliation(s)
- Yanrui Kang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Beining Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
6
|
Abstract
Nucleophilic ring-opening reactions of cyclic oxonium derivatives of anionic boron hydrides are a convenient method of their modification which opens practically unlimited prospects for their incorporation into various macro- and biomolecules. This contribution provides an overview of the synthesis and reactivity of cyclic oxonium derivatives of nido-carborane as well as half-sandwich complexes based on it.
Collapse
|
7
|
Recent trends and tactics in facile functionalization of neutral icosahedral carboranes (C2B10H12) and nido-carborane (7,8-C2B9H12−). ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|