1
|
Lopes Jesus AJ, Nunes CM, Ferreira GA, Keyvan K, Fausto R. Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations. Molecules 2024; 29:3497. [PMID: 39124902 PMCID: PMC11314218 DOI: 10.3390/molecules29153497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The intriguing ability of C-phenyl-nitrilimine to co-exist as allenic and propargylic bond-shift isomers motivated us to investigate how substituents in the phenyl ring influence this behavior. Building on our previous work on the meta- and para-OH substitution, here we extended this investigation to explore the effect of the NH2 substitution. For this purpose, C-(4-aminophenyl)- and C-(3-aminophenyl)-nitrilimines were photogenerated in an argon matrix at 15 K by narrowband UV-light irradiation (λ = 230 nm) of 5-(4-aminophenyl)- and 5-(3-aminophenyl)-tetrazole, respectively. The produced nitrilimines were further photoisomerized to carbodiimides via 1H-diazirines by irradiations at longer wavelengths (λ = 380 or 330 nm). Combining IR spectroscopic measurements and DFT calculations, it was found that the para-NH2-substituted nitrilimine exists as a single isomeric structure with a predominant allenic character. In contrast, the meta-NH2-substituted nitrilimine co-exists as two bond-shift isomers characterized by propargylic and allenic structures. To gain further understanding of the effects of phenyl substitution on the bond-shift isomerism of the nitrilimine fragment, we compared geometric and charge distribution data derived from theoretical calculations performed for C-phenyl-nitrilimine with those performed for the derivatives resulting from NH2 (electron-donating group) and NO2 (electron-withdrawing group) phenyl substitutions.
Collapse
Affiliation(s)
- A. J. Lopes Jesus
- University of Coimbra, CQC-IMS, Faculty of Pharmacy, 3004-295 Coimbra, Portugal
| | - Cláudio M. Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal; (C.M.N.); (G.A.F.); (K.K.); (R.F.)
| | - Gil A. Ferreira
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal; (C.M.N.); (G.A.F.); (K.K.); (R.F.)
| | - Kiarash Keyvan
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal; (C.M.N.); (G.A.F.); (K.K.); (R.F.)
| | - R. Fausto
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal; (C.M.N.); (G.A.F.); (K.K.); (R.F.)
- Istanbul Kultur University, Faculty Sciences and Letters, Department of Physics, Bakirkoy, 34158 Istanbul, Turkey
| |
Collapse
|
2
|
Nunes CM, Doddipatla S, Loureiro GF, Roque JPL, Pereira NAM, Pinho e Melo TMVD, Fausto R. Differential Tunneling-Driven and Vibrationally-Induced Reactivity in Isomeric Benzazirines. Chemistry 2022; 28:e202202306. [PMID: 36066476 PMCID: PMC10092225 DOI: 10.1002/chem.202202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Quantum mechanical tunneling of heavy-atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling-driven and vibrationally-induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6-fluoro- and 2-fluoro-4-hydroxy-2H-benzazirines (3-a and 3'-s) were generated in cryogenic krypton matrices by visible-light irradiation of the corresponding triplet nitrene 3 2-a, which was produced by UV-light irradiation of its azide precursor. The 3'-s was found to be stable under matrix dark conditions, whereas 3-a spontaneously rearranges (τ1/2 ∼64 h at 10 and 20 K) by heavy-atom tunneling to 3 2-a. Near-IR-light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3'-s ring-expansion reaction to a seven-member cyclic ketenimine, but the 3-a undergoes 2H-azirine ring-opening reaction to triplet nitrene 3 2-a. Computations demonstrate that 3-a and 3'-s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3-a to 3 2-a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally-induced sole activation of the most favorable bond-breaking/bond-forming pathway available for 3-a and 3'-s provides pioneer results regarding the selective nature of such processes.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Srinivas Doddipatla
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Gonçalo F. Loureiro
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - José P. L. Roque
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | | | | | - Rui Fausto
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| |
Collapse
|
3
|
Lopes S, Nikitin T, Fausto R. Photochemical Study and Vibrational Spectra of Propiolamide Isolated in Low-Temperature Ar, Xe, and N2 Matrices. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Doddipatla S, Ferreira GI, Gülseven Sıdır Y, Nunes CM, Fausto R. Breaking and Formation of Intramolecular Hydrogen Bonds in Dihydroxybenzaldehydes through UV-Induced Conformational Changes in a Low-Temperature Matrix. J Phys Chem A 2022; 126:8645-8657. [DOI: 10.1021/acs.jpca.2c05839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Srinivas Doddipatla
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Gregory I. Ferreira
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Yadigar Gülseven Sıdır
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
- Department of Physics, Faculty of Science and Arts, Bitlis Eren University, Bitlis 13000, Turkey
| | - Cláudio M. Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| |
Collapse
|
5
|
Brito ALB, Roque JP, Sıdır İ, Fausto R. Low-Temperature Infrared Spectra and Ultraviolet-Induced Rotamerization of 5-Chlorosalicylaldehyde. J Phys Chem A 2022; 126:5148-5159. [PMID: 35905487 PMCID: PMC9778744 DOI: 10.1021/acs.jpca.2c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5-Chlorosalicylaldehyde (abbreviated as 5CSA) is an important chemical used in the synthesis of fragrances, dyes, and pharmaceuticals. In this investigation, 5CSA isolated in solid N2, at 10 K, and in its neat amorphous and crystalline phases, at 50 and 190 K, respectively, were investigated by infrared spectroscopy and DFT(B3LYP)/6-311++G(d,p) calculations. The systematic theoretical analysis of the 5CSA conformational landscape showed that the compound exhibits four different conformers, which were structurally characterized in detail. In the as-deposited low-temperature matrices of 5CSA, only the most stable conformer, the intramolecularly hydrogen-bonded form I, was found. The same was observed in the case of the investigated low-temperature amorphous and crystalline phases of 5CSA. Conformer I was successfully converted into a higher-energy conformer(II), where both aldehyde and hydroxyl groups are rotated by 180° relative to their position in the initial conformer, through narrowband ultraviolet (UV) (λ = 308 nm) in situ irradiation of the as-deposited N2 matrix of 5CSA. The infrared spectra of both matrix-isolated conformers, as well as those of the neat amorphous and crystalline phases of 5CSA, were assigned and interpreted in comparative terms, allowing us to elucidate structurally and vibrationally relevant effects of the main intra- and intermolecular interactions operating in the different studied phases. Very interestingly, the observed UV-induced I → II rotamerization was found to take place in an exclusive basis, with no other photochemical processes being observed to occur upon UV irradiation, under the experimental conditions used in the present investigation.
Collapse
Affiliation(s)
- Anna Luiza B. Brito
- CQC-IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal,
| | - José P.
L. Roque
- CQC-IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - İsa Sıdır
- CQC-IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal,Department
of Physics, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Rui Fausto
- CQC-IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Nunes CM, Pereira NAM, Fausto R. Photochromism of a Spiropyran in Low-Temperature Matrices: Unprecedented Bidirectional Switching between a Merocyanine and an Allene Intermediate. J Phys Chem A 2022; 126:2222-2233. [PMID: 35362982 DOI: 10.1021/acs.jpca.2c01105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photochromism of spiropyrans has attracted much attention due to its potential in many light-controlled system applications. However, several fundamental aspects regarding the structure, energetics, and mechanistic details of the transformations of spiropyrans are still not well understood. Here, we report the study of the photochromism of a 6-hydroxy-spiropyran (HBPS) under conditions of matrix isolation, where monomers of the compound are frozen in a solidified noble gas (krypton, at 15 K). The structure of the matrix-isolated HBPS was first elucidated by infrared (IR) spectroscopy supported by density functional theory computations. Then, the photochromism of HBPS, from the colorless spiropyran to the colored merocyanine, was induced by ultraviolet (UV) irradiation at 310 nm. The analysis of the IR spectrum of the photoproduced species revealed the exclusive formation of the most stable merocyanine MC-TTC stereoisomer. Subsequent visible-light (550 nm) irradiation of MC-TTC generated a new colorless allenic isomeric species ALN, where the UV irradiation (310 nm) of ALN was found to convert this species back to MC-TTC. This constitutes an unprecedented bidirectional transformation between a colored merocyanine and a colorless allene species. The newly observed photoswitching reaction (or photochromism) occurs along an intramolecular hydrogen bond existing in both merocyanine and allenic species, thus suggesting that it might be generally feasible in the chemistry of spiropyrans. On the other hand, the usual assumption that, as a general rule, merocyanines photochemically revert to spiropyrans is not supported in this work.
Collapse
Affiliation(s)
- Cláudio M Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Nelson A M Pereira
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| |
Collapse
|
7
|
Fausto R, Ildiz GO, Nunes CM. IR-induced and tunneling reactions in cryogenic matrices: the (incomplete) story of a successful endeavor. Chem Soc Rev 2022; 51:2853-2872. [PMID: 35302145 DOI: 10.1039/d1cs01026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, IR-induced and tunneling-driven reactions observed in cryogenic matrices are described in a historical perspective, the entangling of the two types of processes being highlighted. The story of this still ongoing fascinating scientific endeavor is presented here following closely our own involvement in the field for more than 30 years, and thus focuses mostly on our work. It is, because of this reason, also an incomplete story. Nevertheless, it considers a large range of examples, from very selective IR-induced conformational isomerizations to IR-induced bond-breaking/bond-forming reactions and successful observations of rare heavy atom tunneling processes. As a whole, this article provides a rather general overview of the major progress achieved in the field.
Collapse
Affiliation(s)
- Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Gulce O Ildiz
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal. .,Department of Physics, Faculty of Sciences and Letters, Istanbul Kultur University, 34158 Bakirkoy, Istanbul, Turkey
| | - Cláudio M Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
8
|
Kowalski PH, Krzemińska A, Pernal K, Pastorczak E. Dispersion Interactions between Molecules in and out of Equilibrium Geometry: Visualization and Analysis. J Phys Chem A 2022; 126:1312-1319. [PMID: 35166552 PMCID: PMC8883464 DOI: 10.1021/acs.jpca.2c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The London dispersion interactions between systems undergoing bond breaking, twisting, or compression are not well studied due to the scarcity and the high computational cost of methods being able to describe both the dynamic correlation and the multireference character of the system. Recently developed methods based on the Generalized Valence Bond wave function, such as EERPA-GVB and SAPT(GVB) (SAPT = symmetry-adapted perturbation theory), allow one to accurately compute and analyze noncovalent interactions between multireference systems. Here, we augment this analysis by introducing a local indicator for dispersion interactions inspired by Mata and Wuttke's Dispersion Interaction Density [ J. Comput. Chem. 2017, 38, 15-23] applied on top of an EERPA-GVB computation. Using a few model systems, we show what insights into the nature and evolution of the dispersion interaction during bond breaking and twisting such an approach is able to offer. The new indicator can be used at a minimal cost additional to an EERPA-GVB computation and can be complemented by an energy decomposition employing the SAPT(GVB) method. We explain the physics behind the initial increase, followed by a decrease in the interaction of linear molecules upon bond stretching. Namely, the elongation of covalent bonds leads to the enhancement of attractive dispersion interactions. For even larger bond lengths, this effect is canceled by the increase of the repulsive exchange forces resulting in a suppression of the interaction and finally leading to repulsion between monomers.
Collapse
Affiliation(s)
- Piotr H Kowalski
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|