1
|
Ramachandran PV, Alawaed AA, Singh A. Titanium-Mediated Reduction of Carboxamides to Amines with Borane-Ammonia. Molecules 2023; 28:4575. [PMID: 37375131 DOI: 10.3390/molecules28124575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the successful titanium tetrachloride-catalyzed reduction of aldehydes, ketones, carboxylic acids, and nitriles with borane-ammonia was extended to the reduction (deoxygenation) of a variety of aromatic and aliphatic pri-, sec- and tert-carboxamides, by changing the stoichiometry of the catalyst and reductant. The corresponding amines were isolated in good to excellent yields, following a simple acid-base workup.
Collapse
Affiliation(s)
| | - Abdulkhaliq A Alawaed
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Aman Singh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Karmakar H, Kumar R, Sharma J, Bag J, Pal K, Panda TK, Chandrasekhar V. N^N vs. N^E (E = S or Se) coordination behavior of imino-phosphanamidinate chalcogenide ligands towards aluminum alkyls: efficient hydroboration catalysis of nitriles, alkynes, and alkenes. Dalton Trans 2023; 52:4481-4493. [PMID: 36919767 DOI: 10.1039/d3dt00038a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The synthesis, characterization, and catalytic application of six aluminum alkyl complexes supported by various imino-phosphanamidinate chalcogenide ligands are described. Six different unsymmetrical imino-phosphanamidinate chalcogenide ligands [NHIRP(Ph)(E)NH-Dipp] [R = 2,6-diisopropylphenyl (Dipp), E = S (2a-H), Se (2b-H); R = mesityl (Mes), E = S (3a-H), Se (3b-H); R = tert-butyl (tBu), E = S (4a-H), Se (4b-H)] were prepared by the oxidation of respective imino-phosphanamide ligands (1a, 1b and 1c) with elemental chalcogen atoms (S and Se). The aluminum complexes with imino-phosphanamidinate chalcogenide ligands with the general formulae [κ2NN-{NHIRP(Ph)(E)N-Dipp}AlMe2] [R = Dipp, E = S (5a), Se (5b); R = Mes, E = S (6a), Se (6b)] or [κ2NE-{NHIRP(Ph)(E)N-Dipp}AlMe2] [R = tBu, E = S (7a), Se (7b)] were synthesized in good yields from the reaction of the suitable protic ligands (2a,b-H-4a,b-H) and trimethylaluminum in a 1 : 1 molar ratio in toluene at room temperature. All the protic ligands and aluminum complexes were well characterized by multi-nuclear NMR spectroscopy, and the solid-state structures of 2a,b-H-4a,b-H, 5a,b-6a,b and 7b are established by single crystal X-ray diffraction analysis. The aluminum complexes 5a,b-7a,b were tested as catalysts for the hydroboration of nitriles, alkynes, and alkenes under mild conditions. The catalytic hydroboration reactions of nitriles, alkynes, and alkenes were accomplished with complex 5b at a mild temperature under solvent-free conditions to afford a high yield of the corresponding N,N-diborylamines, vinylboranes and alkyl boronate esters, respectively.
Collapse
Affiliation(s)
- Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Jyoti Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Jayanta Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500107, Hyderabad, India. .,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Kamali E, Mohammadkhani A, Pazoki F, Heydari A. Solvent‐Free Choline Derivative Synthesis as a Powerful Organic Synthesis Medium. ChemistrySelect 2023. [DOI: 10.1002/slct.202204642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Ehsan Kamali
- Chemistry Department Tarbiat Modares University Tehran PO Box: 14155–4838 Iran
| | | | - Farzane Pazoki
- Chemistry Department Tarbiat Modares University Tehran PO Box: 14155–4838 Iran
| | - Akbar Heydari
- Chemistry Department Tarbiat Modares University Tehran PO Box: 14155–4838 Iran
| |
Collapse
|
4
|
Adilkhanova A, Frolova VF, Yessengazin A, Öztopçu Ö, Gudun KA, Segizbayev M, Matsokin NA, Dmitrienko A, Pilkington M, Khalimon AY. Synthesis and catalytic performance of nickel phosphinite pincer complexes in deoxygenative hydroboration of amides. Dalton Trans 2023; 52:2872-2886. [PMID: 36762562 DOI: 10.1039/d2dt03801c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A series of imino-POCNR, amino-POCNR2, and bis(phosphinite) POCOP pincer complexes of Ni(II) were prepared and tested in catalytic deoxygenative hydroboration of amides with HBPin to the corresponding amines. In contrast to the deoxygenative hydrosilylation approach, primarily developed for tertiary amides, superior reactivity in Ni-catalyzed deoxygenative hydroboration was demonstrated for secondary carboxamides. The bis(phosphinite) hydride complex (POCOP)NiH proved the most active in these reactions, tolerating potentially reducible functionalities such as internal alkenes, esters, nitriles, heteroaromatic compounds, and tertiary amides. Preferable hydroboration of secondary amides was also demonstrated in the presence of primary amide functionalities. The reactions were conducted at 60-80 °C, representing a rare example of a base-metal catalytic system for selective deoxygenation of secondary amides to the corresponding amines under mild conditions. In contrast to secondary amides, deoxygenative hydroboration of primary amides was demonstrated using an iminophosphinite pre-catalyst (POCNDmp)Ni(CH2TMS) (Dmp = 2,6-Me2C6H3). Deoxygenation reactions were suggested to proceed via a direct C-O bond cleavage mechanism, which is triggered by dehydrogenative N-borylation to access more electrophilic N-borylamides amenable to the addition of HBPin to the carbonyl group.
Collapse
Affiliation(s)
- Aziza Adilkhanova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan. .,School of Mining and Geosciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Valeriya F Frolova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Azamat Yessengazin
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Özgür Öztopçu
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Kristina A Gudun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | - Medet Segizbayev
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada
| | - Nikita A Matsokin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anton Dmitrienko
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada
| | - Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| |
Collapse
|
5
|
Kumar R, Sharma V, Banerjee S, Vanka K, Sen SS. Controlled reduction of isocyanates to formamides using monomeric magnesium. Chem Commun (Camb) 2023; 59:2255-2258. [PMID: 36748261 DOI: 10.1039/d3cc00036b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Subhrashis Banerjee
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
6
|
Li MY, Li J, Gu A, Nong XM, Zhai S, Yue ZY, Feng CG, Liu Y, Lin GQ. Solvent-free and catalyst-free direct alkylation of alkenes. GREEN CHEMISTRY 2023; 25:7073-7078. [DOI: 10.1039/d3gc02685j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A convenient method for synthesizing trisubstituted alkenes through direct alkylation of alkenes was achieved under solvent-free and catalyst-free conditions. This reaction highlighted by a low E-factor and a high atom- and step-economy.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Pahar S, Sharma V, Mahata B, George CP, Sharma H, Vanka K, Sen SS. Tridentate NacNac Stabilized Tin and Nickel Complexes: Access to a Monomeric Nickel Hydride and Its Catalytic Application. Inorg Chem 2022; 61:17370-17377. [PMID: 36264667 DOI: 10.1021/acs.inorgchem.2c03227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmetalation reaction of picolyl-supported tridentate nacnac germylene monochloride [2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)]GeCl (1) (py = pyridine) with SnCl2 results in an analogous stannylene chloride (2). The three-coordinated stannylenium cation [{2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)}Sn]+ with SnCl3- as a counteranion (3) has been generated through the abstraction of chloride ligand from 2 using an additional equivalent of SnCl2. Instead of forming a donor-acceptor complex, 2 undergoes a facile redox transmetalation reaction with Ni(COD)2 (COD = cyclooctadiene) and CuCl to afford analogous nickel and copper complexes [2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)]MCl [M = Ni (4) and Cu (5)]. The reactions of 4 with potassium tri-sec-butylborohydride (commonly known as K-selectride) and AgSbF6 provide access to monomeric Ni(II) hydride, [2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)]NiH (6) and a Ni(II) cation, [{2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)}Ni][SbF6] (7), respectively. 6 was found to be an effective catalyst for the hydroboration of amides.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Biplab Mahata
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Christy P George
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Himanshu Sharma
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
8
|
Seok JE, Kim HT, Kim J, Lee JH, Jaladi AK, Hwang H, An DK. Effective magnesium‐catalyzed hydroboration of nitriles and imines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Eun Seok
- Kangwon National University College of Natural Sciences Chemistry KOREA, REPUBLIC OF
| | - Hyun Tae Kim
- Kangwon National University College of Natural Sciences Chemistry KOREA, REPUBLIC OF
| | - Jaeho Kim
- Kangwon National University College of Natural Sciences Chemistry KOREA, REPUBLIC OF
| | - Ji Hye Lee
- Kangwon National University Chemistry KOREA, REPUBLIC OF
| | | | - Hyonseok Hwang
- Kangwon National University College of Natural Sciences Chemistry KOREA, REPUBLIC OF
| | - Duk Keun An
- Kangwon National University Chemistry KangwondoHyoja-2-dong 200-701 Chuncheon KOREA, REPUBLIC OF
| |
Collapse
|
9
|
Gudun KA, Tussupbayev S, Slamova A, Khalimon AY. Hydroboration of isocyanates: cobalt-catalyzed vs. catalyst-free approaches. Org Biomol Chem 2022; 20:6821-6830. [PMID: 35968649 DOI: 10.1039/d2ob01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroboration of isocyanates with HBPin was demonstrated using both catalytic and catalyst-free approaches. In arene solvents, the reactions employed the commercially available and bench-stable Co(acac)2/dpephos (dpephos = bis[(2-diphenylphosphino)phenyl] ether) pre-catalyst and proved chemodivergent, showing the formation of either formamides or N-methylamines, depending on the concentration of HBPin and the reaction conditions used. Catalytic monohydroboration of isocyanates to formamides was found to be highly chemoselective, tolerating alkenes, alkynes, aryl halides, esters, carboxamides, nitriles, nitroarenes and heteroaromatic functionalities. The catalyst-free hydroboration reactions have been demonstrated in neat HBPin. Whereas monohydroboration proved less selective compared with Co(acac)2/dpephos-catalyzed transformations, selective deoxygenative hydroboration of isocyanates to N-methylamines was observed under catalyst-free conditions.
Collapse
Affiliation(s)
- Kristina A Gudun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan.
| | - Samat Tussupbayev
- Institute of Polymer Materials and Technologies, 3/1 Atyrau 1, Almaty 050019, Kazakhstan
| | - Ainur Slamova
- Core Facilities, Office of the Provost, Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan
| | - Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan. .,The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
10
|
Dolui P, Tiwari V, Saini P, Karmakar T, Makhal K, Goel H, Elias AJ. A Catalyst and Solvent Free Route for the Synthesis of N-Substituted Pyrrolidones from Levulinic Acid. Chemistry 2022; 28:e202200829. [PMID: 35579503 DOI: 10.1002/chem.202200829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/11/2022]
Abstract
An efficient, metal-free, catalyst-free and solvent-free methodology for the reductive amination of levulinic acid with different anilines has been developed using HBpin as the reducing reagent. This protocol offers an excellent method to avoid solvents and added catalysts on the synthesis of different kinds of N-substituted pyrrolidones under metal free conditions. It is also the first report for the synthesis of different pyrrolidones by solvent-free as well as catalyst-free methods. The proposed mechanism for the formation of pyrrolidone has been supported by DFT calculations and control experiments.
Collapse
Affiliation(s)
- Pritam Dolui
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Parul Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Koushik Makhal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Harshita Goel
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anil J Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
11
|
Abstract
The addition of a B-H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon-carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Khalimon AY. Deoxygenative hydroboration of carboxamides: a versatile and selective synthetic approach to amines. Dalton Trans 2021; 50:17455-17466. [PMID: 34787155 DOI: 10.1039/d1dt03516a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deoxygenative reduction of amides is considered as an attractive method for preparation of synthetically valuable amines. However, the low electrophilicity of the amide carbonyl group, high thermodynamic stability and kinetic inertness of the amides make their reduction a challenging task. Until recently, most efforts for catalytic deoxygenation of amides to amines were concentrated on hydrogenation and hydrosilylation approaches, which mainly employed precious metal catalysts and often required harsh reaction conditions and showed insufficient selectivities. Moreover, these reactions are mostly limited to secondary and tertiary amides, whereas direct reduction of primary amides to primary amines remained arduous. In contrast, deoxygenative hydroboration of amides, although it appeared less then a decade ago, has already proved advantageous in terms of the amide scope, reaction conditions and selectivity of transformations. This article provides an overview of the developments in hydroboration of amides, focusing on mechanistic aspects of these transformations and advantages of hydroboration compared to hydrogenation and hydrosilylation approaches.
Collapse
Affiliation(s)
- Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
13
|
Yi J, Kim HT, Jaladi AK, An DK. Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst‐free synthesis of various substituted amines. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaeeun Yi
- Department of Chemistry Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Republic of Korea
| | - Hyun Tae Kim
- Department of Chemistry Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Republic of Korea
| | - Ashok Kumar Jaladi
- Department of Chemistry Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Republic of Korea
| | - Duk Keun An
- Department of Chemistry Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Republic of Korea
| |
Collapse
|