1
|
Barman S, Padhan J, Sudhamalla B. Uncovering the non-histone interactome of the BRPF1 bromodomain using site-specific azide-acetyllysine photochemistry. J Biol Chem 2024; 300:105551. [PMID: 38072045 PMCID: PMC10789646 DOI: 10.1016/j.jbc.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/08/2024] Open
Abstract
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
2
|
Shi N, Zheng M, Wu X, Chen N, Jiang L, Chang B, Lu F, Liu F. Construction and Catalytic Study of Affinity Peptide Orientation and Light Crosslinking Immobilized Sucrose Isomerase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13401-13408. [PMID: 37647235 DOI: 10.1021/acs.jafc.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel affinity peptide orientation and light-controlled covalent immobilized method was developed. Sucrose isomerase (SI) was selected as the model enzyme. Molecular simulation was first performed to select the targeted immobilization region. Subsequently, a short peptide (H2N-VNIGGX-COOH, VG) with high affinity to this region was rationally designed. Thereafter, 4-benzoyl-l-phenylalanine with the photosensitive group of benzophenone was introduced. Then, the affinity between the ligand and the SI was validated using molecular dynamics simulation. Thereafter, the SI was directionally immobilized onto the surface of the epoxy resin (EP) guided by VG via photo-crosslinking, and thus the oriented photo-crosslinking enzymes were obtained. The enzymatic activity, thermostability, and reusability of the affinity directional photo-crosslinked immobilized sucrose isomerase (hv-EP-VG-SI) were systematically studied. The oriented immobilization enzymes were significantly improved in recycling and heat resistance. Moreover, hv-EP-VG-SI retained more than 90% of the original activity and 50% of the activity after 11 cycles.
Collapse
Affiliation(s)
- Nian Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingqiang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baogen Chang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Yadav Y, Barman S, Roy A, Padhan J, Sudhamalla B. Uncovering the Domain-Specific Interactome of the TAF1 Tandem Reader Using Site-Specific Azide-Acetyllysine Photochemistry. Biochemistry 2023; 62:270-280. [PMID: 35786907 DOI: 10.1021/acs.biochem.2c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Combinatorial readout of histone post-translational modifications by tandem reader modules mediates crosstalk among different histone modifications. To identify the domain-specific interactome of the tandem reader, we engineered the dual bromodomain of TATA-binding protein-associated factor-1 (TAF1) to carry a photoactivatable unnatural amino acid, 4-azido-l-phenylalanine (AzF), via amber suppressor mutagenesis. Using computational approaches, we modeled the targeted residues of TAF1 with AzF to predict the cross-linking distance between the reactive arylazide and its interacting partner. We developed three photoactivatable TAF1 tandem-bromodomain analogues, viz., Y1403AzF in bromodomain 1 (BD1), W1526AzF in bromodomain 2 (BD2), and Y1403AzF/W1526AzF in both BD1 and BD2. Circular dichroism and a thermal shift assay were used to confirm the structural integrity of the engineered readers. Using the TAF1 tandem-bromodomain analogues, we characterized their histone ligand binding properties by isothermal titration calorimetry and photo-cross-linking experiments. We found that the dual bromodomain of TAF1 independently binds and cross-links to different acetylated histone ligands. We further used the engineered BD1 and BD2 analogues of the TAF1 tandem readers to identify their domain-specific interacting partners at the cellular level. Both BD1 and BD2 independently cross-link to a unique interactome, and importantly, the dual cross-linker carrying TAF1 analogue could capture both BD1- and BD2-specific interactomes. Our work concludes that BD1 and BD2 of the TAF1 tandem reader independently recognize their interacting partners to regulate downstream cellular functions.
Collapse
Affiliation(s)
- Yogita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
4
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
5
|
Barman S, Roy A, Padhan J, Sudhamalla B. Molecular Insights into the Recognition of Acetylated Histone Modifications by the BRPF2 Bromodomain. Biochemistry 2022; 61:1774-1789. [PMID: 35976792 DOI: 10.1021/acs.biochem.2c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HBO1 [HAT bound to the origin recognition complex (ORC)], a member of the MYST family of histone acetyltransferases (HATs), was initially identified as a binding partner of ORC that acetylates free histone H3, H4, and nucleosomal H3. It functions as a quaternary complex with the BRPF (BRPF1/2/3) scaffolding protein and two accessory proteins, ING4/5 and Eaf6. Interaction of BRPF2 with HBO1 has been shown to be important for regulating H3K14 acetylation during embryonic development. However, how BRPF2 directs the HBO1 HAT complex to chromatin to regulate its HAT activity toward nucleosomal substrates remains unclear. Our findings reveal novel interacting partners of the BRPF2 bromodomain that recognizes different acetyllysine residues on the N-terminus of histone H4, H3, and H2A and preferentially binds to H4K5ac, H4K8ac, and H4K5acK12ac modifications. In addition, mutational analysis of the BRPF2 bromodomain coupled with isothermal titration calorimetry binding and pull-down assays on the histone substrates identified critical residues responsible for acetyllysine binding. Moreover, the BRPF2 bromodomain could enrich H4K5ac mark-bearing mononucleosomes compared to other acetylated H4 marks. Consistent with this, ChIP-seq analysis revealed that BRPF2 strongly co-localizes with HBO1 at histone H4K5ac and H4K8ac marks near the transcription start sites in the genome. Our study provides novel insights into how the histone binding function of the BRPF2 bromodomain directs the recruitment of the HBO1 HAT complex to chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
6
|
Wang S, Osgood AO, Chatterjee A. Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol 2022; 74:102352. [PMID: 35334254 PMCID: PMC9464464 DOI: 10.1016/j.sbi.2022.102352] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023]
Abstract
In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein-protein interactions (PPIs) - for example with reader proteins that directly bind the modified amino acid residue - which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.
Collapse
Affiliation(s)
- Shu Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|