1
|
DeYong AE, Li K, Chaikof EL. Synthesis of Sulfonated Peptides Using a Trifluoromethyltoluene-Protected Amino Acid. J Org Chem 2025; 90:1327-1332. [PMID: 39809455 DOI: 10.1021/acs.joc.4c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A scalable, seven step synthesis is reported for a trifluoromethyl toluene protected sulfonated phenylalanine building block whose utility was demonstrated in the synthesis of four CXCR4-derived sulfonopeptides. When compared to a conventional trichloroethyl protected building block, overall yield was improved by up to 4-fold. We believe this building block will prove to be of significant value for the synthesis of a variety of peptide targets containing phenylalanine sulfonate, a bioisostere of tyrosine sulfate, enabling orthogonal protection strategies and improving synthetic efficiency and yield.
Collapse
Affiliation(s)
- Ashley E DeYong
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Kaicheng Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Dockerill M, Ford DJ, Angerani S, Alwis I, Dowman LJ, Ripoll-Rozada J, Smythe RE, Liu JST, Pereira PJB, Jackson SP, Payne RJ, Winssinger N. Development of supramolecular anticoagulants with on-demand reversibility. Nat Biotechnol 2024:10.1038/s41587-024-02209-z. [PMID: 38689027 DOI: 10.1038/s41587-024-02209-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Drugs are administered at a dosing schedule set by their therapeutic index, and termination of action is achieved by clearance and metabolism of the drug. In some cases, such as anticoagulant drugs or immunotherapeutics, it is important to be able to quickly reverse the drug's action. Here, we report a general strategy to achieve on-demand reversibility by designing a supramolecular drug (a noncovalent assembly of two cooperatively interacting drug fragments held together by transient hybridization of peptide nucleic acid (PNA)) that can be reversed with a PNA antidote that outcompetes the hybridization between the fragments. We demonstrate the approach with thrombin-inhibiting anticoagulants, creating very potent and reversible bivalent direct thrombin inhibitors (Ki = 74 pM). The supramolecular inhibitor effectively inhibited thrombus formation in mice in a needle injury thrombosis model, and this activity could be reversed by administration of the PNA antidote. This design is applicable to therapeutic targets where two binding sites can be identified.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Daniel J Ford
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imala Alwis
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Jorge Ripoll-Rozada
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rhyll E Smythe
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Joanna S T Liu
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Shaun P Jackson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. J Biol Chem 2022; 298:102232. [PMID: 35798140 PMCID: PMC9372746 DOI: 10.1016/j.jbc.2022.102232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification, can determine and often enhance protein–protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.
Collapse
Affiliation(s)
- Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, USA.
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, USA; Genome Center, University of California, Davis, USA.
| |
Collapse
|