1
|
Guari Y. Advanced Porous Nanomaterials: Synthesis, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1602. [PMID: 39404329 PMCID: PMC11478733 DOI: 10.3390/nano14191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Porous nanomaterials have emerged as one of the most versatile and valuable classes of materials, captivating the attention of both scientists and engineers due to their exceptional functional and structural properties [...].
Collapse
Affiliation(s)
- Yannick Guari
- ICGM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
2
|
Tai H, Ding W, Zhang X, Liang K, Rong Y, Liu Z. Upgrading Structural Conjugation in Three-Dimensional Ni-Based Metal-Organic Frameworks for Promoting Electrical Conductivity and Specific Capacitance. Inorg Chem 2024; 63:18083-18091. [PMID: 39295589 DOI: 10.1021/acs.inorgchem.4c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for electrochemical energy storage and conversion due to their high specific surface areas, abundant active sites, and excellent chemical and structural tunability. However, the direct utilization of MOFs as electrochemical materials is a challenge because of the poor electroconductivity induced by the insulating nature of most organic linkers. Herein, a conjugated three-dimensional Ni-MOF {Ni(HBTC)(BPE)}n (Ni-BPE) with a 2-fold interpenetrating structure was developed via the coordination polymerization of Ni2+, a H3BTC ligand (1,3,5-benzenetricarboxylic acid), and a vinyl-functionalized bipyridine linker (1,2-di(4-pyridyl)ethylene, BPE). Ni-BPE displayed an enhanced conjugation system compared to analogous and insulated Ni-BPY that is constructed by the Ni-BTC layer and ordinary bipyridine linker (4,4'-bipyridine, BPY). Notably, upgrading structural conjugation promoted a dramatical ∼204 times increase in the electroconductivity of Ni-BPE compared to Ni-BPY. More importantly, Ni-BPE displayed a higher specific capacitance of 633.2 F g-1 (316.6 C g-1) at 1 A g-1, which exhibited a significant ∼1.5-fold enhancement than Ni-BPY. Furthermore, the asymmetric supercapacitor can reach a good energy density of 25.2 Wh kg-1 with a reasonable cycle stability of 71.0% over 5000 cycles. This work provides an effective method for optimizing the structure of insulating MOFs to enhance the electroconductivity and specific capacitance.
Collapse
Affiliation(s)
- Hongbo Tai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Wenyu Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Xuan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Kaicheng Liang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yang Rong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
3
|
Safdar A, Mohamed HEA, Muhaymin A, Hkiri K, Matinise N, Maaza M. Biogenic synthesis of nickel cobaltite nanoparticles via a green route for enhancing the photocatalytic and electrochemical performances. Sci Rep 2024; 14:17620. [PMID: 39085423 PMCID: PMC11291633 DOI: 10.1038/s41598-024-68574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Green synthesis aligns with the global demand for eco-friendly and sustainable technologies, reducing the dependency on harmful chemicals and high-energy processes typically used in conventional synthesis techniques. This study highlights a novel green synthesis route for nickel cobaltite nanoparticles (NiCO2O4 NPs) utilizing Hyphaene thebaica extract as a natural reducing and stabilizing agent. The synthesized NiCO2O4 NPs, with sizes ranging from 20 to 30 nm, exhibited uniform diamond-like structures as confirmed by SEM and TEM imaging. XRD analysis verified the polycrystalline nature of these nanoparticles, while EDS measurements confirmed the elemental composition of Ni and Co. The presence of functional groups was subsequently verified through FT-IR analysis, and Raman spectroscopy further confirmed phase formation. Electrochemical evaluations revealed significant pseudocapacitive behavior, showing a specific capacitance of 519 F/g, demonstrating their potential for high-performance supercapacitors. To further assess the applicability of the synthesized NiCO2O4 NPs, their photocatalytic activity against methylene blue (MB) dye was investigated, resulting in a 99% degradation rate. This impressive photocatalytic efficiency highlights their potential application in environmental remediation. Overall, this work underscores the significant potential of green synthesis methods in producing high-performance nanomaterials while simultaneously reducing environmental impact and promoting sustainable development.
Collapse
Affiliation(s)
- Ammara Safdar
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, P.O. Box 392, Muckleneuk RidgePretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
- Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad, Pakistan
| | - Hamza Elsayed Ahmad Mohamed
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, P.O. Box 392, Muckleneuk RidgePretoria, South Africa.
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa.
| | - Abdul Muhaymin
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, P.O. Box 392, Muckleneuk RidgePretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
- Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad, Pakistan
| | - Khaoula Hkiri
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, P.O. Box 392, Muckleneuk RidgePretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Nolubabalo Matinise
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, P.O. Box 392, Muckleneuk RidgePretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, P.O. Box 392, Muckleneuk RidgePretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| |
Collapse
|
4
|
Zeng H, Yao C, Wu C, Wang D, Ma W, Wang J. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310811. [PMID: 38299466 DOI: 10.1002/smll.202310811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Osmotic energy, as a renewable clean energy with huge energy density and stable yield, has received widespread attention over the past decades. Reverse electrodialysis (RED) based on ion-exchange membranes is an important method of obtaining osmotic energy from salinity gradients. The preparation of ion-exchange membranes with both high ion selectivity and ion permeability is in constant exploration. In this work, metal hydroxide-organic framework (MHOF) membranes are successfully prepared onto porous anodic aluminum oxide (AAO) membranes by a facile hydrothermal method to form Ni2(OH)2@AAO composite membranes, used for osmotic energy conversion. The surface is negatively charged with cation selectivity, and the asymmetric structure and extreme hydrophilicity enhance the ionic flux for effective capture of osmotic energy. The maximum output power density of 5.65 W m-2 at a 50-fold KCl concentration gradient is achieved, which exceeds the commercial benchmark of 5 W m-2. Meanwhile, the composite membrane can also show good performance in different electrolyte solutions and acid-base environments. This work provides a new avenue for the construction and application of MHOF membranes in efficient osmotic energy conversion.
Collapse
Affiliation(s)
- Huan Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Chenling Yao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Caiqin Wu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Di Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Wenbo Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
5
|
Lu F, Yao J, Ji Y, Shi D, Zhang P, Zhang S. Mixed solvent-assisted synthesis of high mass loading amorphous NiCo-MOF as a promising electrode material for supercapacitors. Dalton Trans 2023; 52:13395-13404. [PMID: 37691555 DOI: 10.1039/d3dt02354k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The pursuit of high mass loading metal-organic framework (MOF) materials via a simple method is crucial to achieve high-performance supercapacitors. Herein, an amorphous NiCo-MOF material with a high mass loading of up to 10.3 mg cm-2 was successfully prepared using a mixed solvent system of ethanol and water. In addition, by adjusting the volume ratio of ethanol to water, amorphous NiCo-MOFs with three different morphologies including nanospheres, nanopores, and ultra-thick plates were obtained. It was found that the different solvent systems not only affected the growth rate of MOFs, but also controlled their nucleation rate by changing the coordination environment of the metal ions, and thus achieved morphology and mass loading regulation, thereby influencing their energy storage behavior. Notably, the optimum NiCo-MOF exhibited the superior specific capacitance of up to 9.7 F cm-2 (941.8 F g-1) at a current density of 5 mA cm-2 and high-rate capability of 71.1% even at 20 mA cm-2. Moreover, the corresponding assembled solid-state supercapacitor exhibited an excellent energy density of 0.65 mW h cm-2 at a power density of 2 mW cm-2 and capacity retention of 84.7% after 8000 cycles at 30 mA cm-2. Overall, this work proposes a feasible and effective strategy to achieve high mass loading NiCo-MOFs, impacting their ultimate electrochemical performance, which can possibly be further extended to other MOFs with superior capacitance.
Collapse
Affiliation(s)
- Faxue Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Junnan Yao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Yajun Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Dong Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Pengcheng Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Shixiong Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| |
Collapse
|
6
|
Wang LY, Cai ZP, Ma C, Wang KX, Chen JS. Poly( p-phenylenediamine)-Coated Metal-Organic Frameworks for High-Performance Sodium-Ion Batteries: The Balance of Capacity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44364-44372. [PMID: 37668259 DOI: 10.1021/acsami.3c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metal-organic frameworks (MOFs) with well-defined porous structures and highly active frameworks are considered as promising electrode materials for sodium-ion batteries (SIBs). However, the structure pulverization upon sodiation/desodiation impacts on their practical application in SIBs. To address this issue, poly(p-phenylenediamine) (PPA) was uniformly coated onto the surface of MIL-88A, a typical Fe-based MOF through in situ polymerization initiated by the metal ions (Fe3+) of MIL-88A. Used as an anode material for SIBs, the PPA-coated MIL-88A, denoted as PPA@MIL-88A, showed significantly improved electrochemical performance. A reversible capacity as high as 230 mAh g-1 was achieved at 0.2 A g-1 even after 500 cycles. MIL-88A constructed with electrochemically active Fe3+ and fumaric acid ligands guarantees the high specific capacity, while the PPA polymer coating effectively inhibits the pulverization of MIL-88A. This work provides an efficient strategy for improving the structure and cycling stability of MOFs-based electrode materials.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi-Peng Cai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Ma
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Zheng H, Zhong B, Wang Q, Li X, Chen J, Liu L, Liu T. ZnO-Doped Metal-Organic Frameworks Nanoparticles: Antibacterial Activity and Mechanisms. Int J Mol Sci 2023; 24:12238. [PMID: 37569611 PMCID: PMC10418459 DOI: 10.3390/ijms241512238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Metal-Organic Frameworks (MOFs) offer new ideas for the design of antibacterial materials because of their antibacterial properties, high porosity and specific surface area, low toxicity and good biocompatibility compared with other nanomaterials. Herein, a novel antimicrobial nanomaterial, MIL-101(Fe)@ZnO, has been synthesized by hydrothermal synthesis and characterized by FTIR, UV-vis, ICP-OES, XRD, SEM, EDS and BET to show that the zinc ions are doped into the crystal lattice of MIL-101(Fe) to form a Fe-Zn bimetallic structure. MIL-101(Fe)@ZnO was found to be effective against a wide range of antibacterial materials including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter junii and Staphylococcus epidermidis. It has a significant antibacterial effect, weak cytotoxicity, high safety performance and good biocompatibility. Meanwhile, MIL-101(Fe)@ZnO was able to achieve antibacterial effects by causing cells to produce ROS, disrupting the cell membrane structure, and causing protein leakage and lipid preoxidation mechanisms. In conclusion, MIL-101(Fe)@ZnO is an easy-to-prepare antimicrobial nanomaterial with broad-spectrum bactericidal activity and low toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (H.Z.); (B.Z.); (Q.W.); (X.L.); (J.C.); (L.L.)
| |
Collapse
|
8
|
Bandyopadhyay P, Senthamaraikannan TG, Baasanjav E, Karmakar A, Park YS, Lim DH, Jeong SM. Experimental and Theoretical Insights of Anion Regulation in MOF-Derived Ni-Co-Based Nanosheets for Supercapacitors and Anion Exchange Membrane Water Electrolyzers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384879 DOI: 10.1021/acsami.3c05224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The anionic components have a significant role in regulating the electrochemical properties of mixed transition-metal (MTM)-based materials. However, the relationship between the anionic components and their inherent electrochemical properties in MTM-based materials is still unclear. Herein, we report the anion-dependent supercapacitive and oxygen evolution reaction (OER) properties of in situ grown binary Ni-Co-selenide (Se)/sulfide (S)/phosphide (P) nanosheet arrays (NAs) over nickel foam starting from MOF-derived Ni-Co layered double hydroxide precursors. Among them, the Ni-Co-Se NAs exhibited the best specific capacity (289.6 mA h g-1 at 4 mA cm-2). Furthermore, a hybrid device constructed with Ni-Co-Se NAs delivered an excellent energy density (74 W h kg-1 at 525 W kg-1) and an ultra-high power density (10 832 W kg-1 at 46 W h kg-1) with outstanding durability (∼94%) for 10 000 cycles. Meanwhile, the Ni-Co-Se NAs showed superior electrocatalytic OER outputs with the lowest overpotential (235 mV at 10 mA cm-2) and Tafel slope. In addition, Ni-Co-Se NAs outperformed IrO2 as an anode in an anion exchange membrane water electrolyzer at a high current density (>1.0 A cm-2) and exhibited a stable performance up to 48 h with a 99% Faraday efficiency. Theoretical analyses validate that the Se promotes OH adsorption and improves the electrochemical activity of the Ni-Co-Se through a strong electronic redistribution/hybridization with an active metal center due to its valence 4p and inner 3d orbital participations. This study will provide in-depth knowledge of bifunctional activities in MTM-based materials with different anionic substitutions.
Collapse
Affiliation(s)
- Parthasarathi Bandyopadhyay
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Erdenebayar Baasanjav
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ayon Karmakar
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yoo Sei Park
- Department of Advanced Material Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Dong-Hee Lim
- Department of Environmental Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
9
|
In situ self-assembled macroporous interconnected nanosheet arrays of Ni-1,3,5-benzenetricarboxylate metal - organic framework on Ti mesh as high-performance oxygen evolution electrodes. J Colloid Interface Sci 2023; 639:274-283. [PMID: 36805752 DOI: 10.1016/j.jcis.2023.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Highly efficient metal-organic framework (MOF)-based oxygen evolution reaction (OER) catalysts are desirable for water splitting, but their development remains challenging due to poor accessibility of coordinatively unsaturated metal (cum) sites and low intrinsic activity. A large-area three-dimensional (3-D) macroporous interconnected nanosheet array of Ni-1,3,5-benzenetricarboxylate has been in situ self-assembled on Ti mesh (TM) by using ethanol as the solvent and high-affinity oxide layer on TM to promote in situ nucleation. The obtained nanoarchitecture exhibits much superior catalytic activity compared to most reported catalysts including MOF-based catalysts, other precious-metal-free ones, and Ir/Ru-based ones. Additionally, this electrode undergoes no current decay after 300 cyclic voltammetry (CV) cycles and can maintain at 250 mA cm-2 for over 266 h. The excellent catalytic performance is mainly due to the 3-D macroporous and interconnected nanosheet array structure improving cum site exposure and charge transport and in situ activated cum cations enhancing OH- adsorption. This work not only develops a facile and economical approach to synthesize 3-D macroporous interconnected MOF nanosheet arrays to simultaneously increase the number, exposure, and intrinsic activity of active sites and facilitate charge transport for high-performance eletrocatalysis, but provides scientific insights into the mechanisms for self-assembly of this unique nanoarchitecture and for the high OER performance.
Collapse
|
10
|
Cheng P, Wang X, Markus J, Abdul Wahab M, Chowdhury S, Xin R, Alshehri SM, Bando Y, Yamauchi Y, Kaneti YV. Carbon nanotube-decorated hierarchical porous nickel/carbon hybrid derived from nickel-based metal-organic framework for enhanced methyl blue adsorption. J Colloid Interface Sci 2023; 638:220-230. [PMID: 36738545 DOI: 10.1016/j.jcis.2023.01.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
This work reports the incorporation of coordinated water into Ni-BTC nanorods (Ni-BTC-O) which induces their structural transformation to Ni-BTC nanofibres (Ni-BTC-F). The carbonization of the Ni-BTC nanofibres at 600 °C results in the formation of carbon nanotube (CNT)-decorated hierarchical porous nickel/carbon hybrid (labelled as Ni/C-600) with enlarged pores. In contrast, the Ni/C hybrid obtained from the carbonization of the original (unmodified) Ni-BTC nanorods (Ni-BTC-O) at 600 °C (labelled as Ni-BTC-O-600) exhibits smaller pore size and does not show the formation of CNTs. The Ni/C-600 hybrid derived from Ni-BTC-F shows a very high adsorption capacity of 686.8 mg g-1 toward methyl blue (MB) dye. This is approximately 4.8 times higher than the adsorption capacity of Ni-BTC-O-600 (144.1 mg g-1). The higher adsorption performance of Ni/C-600 relative to Ni-BTC-O-600 can be attributed to its larger pore volume, hierarchical porosity, and additional adsorption sites provided by the CNTs. In addition, the Ni/C-600 hybrid can maintain 90% of its adsorption capacity after 5 consecutive cycles, demonstrating its potential as an efficient and recyclable adsorbent for MB dye.
Collapse
Affiliation(s)
- Ping Cheng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Xiaohan Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Josua Markus
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Md Abdul Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Silvia Chowdhury
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saad M Alshehri
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Sahoo G, Jeong HS, Jeong SM. Ligand-Controlled Growth of Different Morphological Bimetallic Metal-Organic Frameworks for Enhanced Charge-Storage Performance and Quasi-Solid-State Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21097-21111. [PMID: 37075253 DOI: 10.1021/acsami.3c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present research work facilitates a ligand-mediated effective strategy to achieve different morphological surface structures of bimetallic (Ni and Co) metal-organic frameworks (MOFs) by utilizing different types of organic ligands like terephthalic acid (BDC), 2-methylimidazole (2-Melm), and trimesic acid (BTC). Different morphological structures, rectangular-like nanosheets, petal-like nanosheets, and nanosheet-assembled flower-like spheres (NSFS) of NiCo MOFs, are confirmed from the structural characterization for ligands BDC, 2-Melm, and BTC, respectively. The basic characterization studies like scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller revealed that the NiCo MOF prepared by using trimesic acid as the ligand (NiCo MOF_BTC) with a long organic linker exhibits a three-dimensional architecture of NSFS that possesses higher surface area and pore dimensions, which enables better ion kinetics. Also, the NiCo MOF_BTC delivered the highest capacity of 1471.4 C g-1 (and 408 mA h g-1) at 1 A g-1 current density, compared to the other prepared NiCo MOFs and already reported different NiCo MOF structures. High interaction of trimesic acid with the metal ions confirmed from ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy leads to a NSFS structure of NiCo MOF_BTC. For practical application, an asymmetric supercapacitor device (NiCo MOF_BTC//AC) is fabricated by taking NiCo MOF_BTC and activated carbon as the positive and negative electrode, respectively, where the PVA + KOH gel electrolyte serves as a separator as well as an electrolyte. The device delivered an outstanding energy density of 78.1 Wh kg-1 at a power density of 750 W kg-1 in an operating potential window of 1.5 V. In addition, it displays a long cycle life of 5000 cycles with only 12% decay of the initial specific capacitance. Therefore, these findings manifest the morphology control of MOFs by using different ligands and the mechanism behind the different morphologies that will provide an effective way to synthesize differently structured MOF materials for future energy-storage applications.
Collapse
Affiliation(s)
- Gopinath Sahoo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyeon Seo Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
12
|
Shao L, Zhang J, Fu Y, Chen J. Metal-Organic Framework Flowers as a Naked-Eye Colorimetric Indicator of Trace Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13526-13534. [PMID: 36877610 DOI: 10.1021/acsami.2c22172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Convenient and sensitive trace water indication is of great significance in various industrial processes. Here, a flower-like metal-organic framework Cu-FMM is assembled from ultrathin nanosheets that change its coordination structure reversibly with the capture and loss of water molecules, enabling sensitive trace water naked-eye colorimetric indication ability. A recognizable black/yellow color change can be observed when the dried Cu-FMM is exposed to the atmosphere or solvent with trace water as low as RH 3% and a water content of 0.25‰ (v/v) and further enables potential trace water imaging applications. The excellent accessibility of the multi-scale pore structure of Cu-FMM contributes to a fast response time of 3.8 s with good reversibility (>100 cycles), outperforming traditional coordination polymer humidity sensors. The present study provides new inspirations for the design of sensitive and applicable naked-eye water indicator materials that are applicable to in situ and continuous monitoring in industrial processes.
Collapse
Affiliation(s)
- Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| |
Collapse
|
13
|
Xu N, Lei H, Hou T, Wang X, Hu Y, Peng H, Ma G. Constructing an asymmetric supercapacitor based on Prussian blue analogues-derived cobalt selenide nanoframeworks and iron oxide nanoparticles. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Preparation of Advanced Multi-Porous Carbon Nanofibers for High-Performance Capacitive Electrodes in Supercapacitors. Polymers (Basel) 2022; 15:polym15010213. [PMID: 36616559 PMCID: PMC9824619 DOI: 10.3390/polym15010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The booming demand for energy storage has driven the rapid development of energy storage devices such as supercapacitors, and the research on high-performance electrode materials, a key component of supercapacitors, has gained tremendous attention. In this research, phenolic resin-based multi-porous carbon nanofibers have been prepared by electrospinning, curing, carbonization and activation and then employed as advanced electrode materials in supercapacitors. We demonstrate that the material is nano-scale continuous fiber, and its surface has pore distribution of different sizes. It delivers a high specific capacitance of 242 F g-1 at a current density of 0.2 A g-1 and maintains 148 F g-1 even at a high current density of 20 A g-1. Moreover, it shows almost no capacitance decay at a current density of 2 A g-1 over 1000 cycles, demonstrating its great potential as high-performance electrodes in supercapacitors.
Collapse
|
15
|
Lokhande P, Kulkarni S, Chakrabarti S, Pathan H, Sindhu M, Kumar D, Singh J, Kumar A, Kumar Mishra Y, Toncu DC, Syväjärvi M, Sharma A, Tiwari A. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Effect of Solvothermal Temperature on Morphology and Supercapacitor Performance of Ni-MOF. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238226. [PMID: 36500318 PMCID: PMC9740099 DOI: 10.3390/molecules27238226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
A series of Ni-MOF materials were synthesized via a simple hydrothermal method and can be employed as electrodes for supercapacitors (SCs). Different temperatures were selected to unveil the effect of temperature on the formation, structure, and electrochemical performance of Ni-MOF-x (x = 60, 80, 100, and 120). Ni-MOF-80 possessed a larger specific surface area with a cross-network structure formed on its surface. The synthesized Ni-MOF electrode delivered a specific capacity of 30.89 mA h g-1 when the current density reached 1 A g-1 in a three-electrode system. The as-fabricated Ni-MOF materials could be further designed and are expected to deliver satisfactory performance in practice.
Collapse
|
17
|
Sun X, Fan Q, Yin X. Jujube Shell Based-Porous Carbon Composites Double-Doped by MnO 2 and Ti 3C 2Tx: The Effect of Double Pseudocapacitive Doping on Electrochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7532. [PMID: 36363126 PMCID: PMC9657630 DOI: 10.3390/ma15217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this study, manganese-containing porous carbon was synthesized from jujube shells by two-step carbonization and activation and was then covered with Ti3C2Tx to obtain double-doped biomass composites. In order to improve the interfacial properties (surface tension and wettability) between Ti3C2Tx and porous carbon, the effects of two media (deionized water and acetone solution) on the electrochemical properties of the composites were compared. The acetone solution changed the surface rheology of Ti3C2Tx and porous carbon, and the decreased surface tension and the increased wettability contributed to the ordered growth of 2D-Ti3C2Tx on the surface of the porous carbon. Raman analysis shows the relatively higher graphitization degree of JSPC&Ti3C2Tx (acetone). Compared with JSPC&Ti3C2Tx, JSPC&Ti3C2Tx (acetone) can maintain better rectangle-like properties even at a higher scanning rate. Under the effect of the acetone solution, the pseudocapacitive ratio of JSPC&Ti3C2Tx (acetone) increased from 10.1% to 30.7%. At the current density of 0.5 A/g, the specific capacitance of JSPC&Ti3C2Tx (acetone) achieved 96.83 F/g, and the specific capacitance of 58.17 F/g was maintained even at the high current density (10 A/g), which shows excellent magnification. Under the condition of the current density of 10 A/g, JSPC&Ti3C2Tx (acetone) can obtain a power density of 52,000 W/kg while maintaining an energy density of 8.74 Wh/kg. After 2000 cycles, the symmetrical button battery assembled with this material can still have a capacitance retention rate of more than 90%. This method realized the deep utilization of green and low-cost raw materials by using biomass as the precursor of composite materials and promoted the further development of carbon-based supercapacitor electrode materials.
Collapse
|
18
|
Yang WD, Wang JX, Wu YT, Chang HS, Ko HH. Preparatory Conditions Optimization and Characterization of Hierarchical Porous Carbon from Seaweed as Carbon-Precursor Using a Box-Behnken Design for Application of Supercapacitor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5748. [PMID: 36013884 PMCID: PMC9416258 DOI: 10.3390/ma15165748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This study has developed an environmentally friendly, simple, and economical process by utilizing seaweed as a carbon precursor to prepare a hierarchical porous carbon for the application of a supercapacitor. In the carbonization process, the design of experiment (DOE) technology is used to obtain the optimal preparatory conditions with the best electrochemical properties for the electrode materials of supercapacitors. Without using strong acid and alkali solution of the green process, NaCl is used as the pore structure proppant of seaweed (SW) for carbonization to obtain hierarchical porous carbon material to improve the pore size distribution and surface area of the material. In the experiment of SW activation, the interaction between factors has been explored by the response surface methodology (RSM) and Box-Behnken design, and the optimal conditions are found. The activated carbon with the specific surface area of 603.7 m2 g-1 and its capacitance reaching 110.8 F g-1 is successfully prepared. At a current density of 1 A g-1, the material still retains 95.4% of the initial capacitance after 10,000 cycles of stability testing. The hierarchical porous carbon material prepared by the design of experiment planning this green process has better energy storage properties than supercapacitors made of traditional carbon materials.
Collapse
Affiliation(s)
- Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807, Taiwan
| | - Jing-Xuan Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| |
Collapse
|
19
|
Britto JF, Samson VAF, Bernadsha SB, Madhavan J, Raj MVA. Synthesis of rNiCo Nanocomposite - As an Electrode Material for Supercapacitor Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Yang JY, Ko TH, Kuk YS, Seo MK, Kim BS. A Facile Fabrication of Ordered Mesoporous Carbons Derived from Phenolic Resin and Mesophase Pitch via a Self-Assembly Method. NANOMATERIALS 2022; 12:nano12152686. [PMID: 35957116 PMCID: PMC9370532 DOI: 10.3390/nano12152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/10/2022]
Abstract
Ordered and disordered mesoporous structures were synthesized by a self-assembly method using a mixture of phenolic resin and petroleum-based mesophase pitch as the starting materials, amphiphilic triblock copolymer F127 as a soft template, hydrochloric acid as a catalyst, and distilled water as a solvent. Then, mesoporous carbons were obtained via autoclave method at low temperature (60 °C) and then carbonization at a relatively low temperature (600 °C), respectively. X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) analyses revealed that the porous carbons with a mesophase pitch content of approximately 10 wt% showed a highly ordered hexagonal mesostructure with a highly uniform pore size of ca. 5.0 nm. In addition, the mesoporous carbons prepared by self-assembly and low-temperature autoclave methods exhibited the amorphous or crystalline carbon structures with higher specific surface area (SSA) of 756 m2/s and pore volume of 0.63 cm3/g, depending on the synthesis method. As a result, mesoporous carbons having a high SSA were successfully prepared by changing the mixing ratio of mesophase pitch and phenolic resin. The electrochemical properties of as-obtained mesoporous carbon materials were investigated. Further, the OMC-meso-10 electrode delivered the maximum SC of about 241 F/g at an applied current density of 1 A/g, which was higher than those of the MC-10 (~104 F/g) and OMC-20 (~115 F/g).
Collapse
Affiliation(s)
- Jae-Yeon Yang
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Korea
| | - Tae Hoon Ko
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Korea
| | - Yun-Su Kuk
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Korea
| | - Min-Kang Seo
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Korea
- Correspondence: (M.-K.S.); (B.-S.K.); Tel.: +82-063-270-2352 (M.K.S. & B.S.K.)
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Korea
- Correspondence: (M.-K.S.); (B.-S.K.); Tel.: +82-063-270-2352 (M.K.S. & B.S.K.)
| |
Collapse
|
21
|
Hang X, Yang R, Xue Y, Zheng S, Shan Y, Du M, Zhao J, Pang H. The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Tao X, Zhang L, He X, Fang L, Wang H, Zhang L, Yu L, Zhu G. Nitrogen-Doped Porous MXene (Ti 3C 2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules 2022; 27:4890. [PMID: 35956839 PMCID: PMC9369756 DOI: 10.3390/molecules27154890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Flexible supercapacitors (FSCs) are limited in flexible electronics applications due to their low energy density. Therefore, developing electrode materials with high energy density, high electrochemical activity, and remarkable flexibility is challenging. Herein, we designed nitrogen-doped porous MXene (N-MXene), using melamine-formaldehyde (MF) microspheres as a template and nitrogen source. We combined it with an electrospinning process to produce a highly flexible nitrogen-doped porous MXene nanofiber (N-MXene-F) as a self-supporting electrode material and assembled it into a symmetrical supercapacitor (SSC). On the one hand, the interconnected mesh structure allows the electrolyte to penetrate the porous network to fully infiltrate the material surface, shortening the ion transport channels; on the other hand, the uniform nitrogen doping enhances the pseudocapacitive performance. As a result, the as-assembled SSC exhibited excellent electrochemical performance and excellent long-term durability, achieving an energy density of 12.78 Wh kg-1 at a power density of 1080 W kg-1, with long-term cycling stability up to 5000 cycles. This work demonstrates the impact of structural design and atomic doping on the electrochemical performance of MXene and opens up an exciting possibility for the fabrication of highly FSCs.
Collapse
Affiliation(s)
- Xin Tao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China; (X.T.); (L.Z.)
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Linlin Zhang
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China; (X.T.); (L.Z.)
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Xuedong He
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Lingzi Fang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Lianghao Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| |
Collapse
|
23
|
Wang J, Zhu Y, Li S, Zhai S, Fu N, Niu Y, Hou S, Luo J, Mu S, Huang Y. Ni-soc-MOF derived carbon hollow sphere encapsulated Ni 3Se 4 nanocrystals for high-rate supercapacitors. Chem Commun (Camb) 2022; 58:8846-8849. [PMID: 35849002 DOI: 10.1039/d2cc01951e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Carbon hollow sphere encapsulated Ni3Se4 (Ni3Se4@CHS) nanocrystals are prepared using the Ni-soc-MOF by pyrolysis and further selenization. Ni3Se4@CHS exhibits a capacitance of 1720 F g-1 at 1 A g-1 and a capacitance retention of 97% after 6000 cycles at 5 A g-1. Moreover, the asymmetric supercapacitor of Ni3Se4@CHS//AC displays a wide potential window of 1.6 V, an energy density of 45.2 W h kg-1 at a power density of 800 W kg-1, and excellent cycling stability (89% capacitance retention) after 5000 cycles. Overall, this work establishes a significant step to synthesize a new carbon-based material with appreciable capacitance and long cycling durability for potential applications in energy storage and beyond.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yue Zhu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shuo Li
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shengxian Zhai
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shaogang Hou
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Jiahuan Luo
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Hang X, Zhao J, Xue Y, Yang R, Pang H. Synergistic effect of Co/Ni bimetallic metal-organic nanostructures for enhanced electrochemical energy storage. J Colloid Interface Sci 2022; 628:389-396. [DOI: 10.1016/j.jcis.2022.07.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
|
25
|
Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. CHEM REC 2022; 22:e202200055. [PMID: 35695377 DOI: 10.1002/tcr.202200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.
Collapse
Affiliation(s)
- Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
26
|
Gao X, Bi J, Gao J, Meng L, Xie L, Liu C. Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Kang K, Wu Z, Zhao M, Li Z, Ma Y, Zhang J, Wang Y, Sajjad M, Tao R, Qiu L. A nanostructured covalent organic framework with readily accessible triphenylstibine moieties for high-performance supercapacitors. Chem Commun (Camb) 2022; 58:3649-3652. [PMID: 35212701 DOI: 10.1039/d2cc00254j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pristine, redox-active triphenylstibine based COF (Sb-COF) exhibits well-uniform nanostructures which could provide sufficient electron conduction pathways and minimize the ion transport lengths, making triphenylstibine moieties readily accessible by the electrolyte. The assembled Sb-COF//rGO thus provides an excellent energy density of 69 W h Kg-1.
Collapse
Affiliation(s)
- Kun Kang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zhengyi Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Miaomiao Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zijie Li
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yunlong Ma
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Jingmin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yan Wang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Muhammad Sajjad
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|