Wu X, Chen A, Yu X, Tian Z, Li H, Jiang Y, Xu J. Microfluidic Synthesis of Multifunctional Micro-/Nanomaterials from Process Intensification: Structural Engineering to High Electrochemical Energy Storage.
ACS NANO 2024. [PMID:
39086355 DOI:
10.1021/acsnano.4c07599]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multifunctional micro-/nanomaterials featuring functional superiority and high value-added physicochemical nature have received immense attention in electrochemical energy storage. Microfluidic synthesis has become an emergent technology for massively producing multifunctional micro-/nanomaterials with tunable microstructure and morphology due to its rapid mass/heat transfer and precise fluid controllability. In this review, the latest progresses and achievements in microfluidic-synthesized multifunctional micro-/nanomaterials are summarized via reaction process intensification, multifunctional micro-/nanostructural engineering and electrochemical energy storage applications. The reaction process intensification mechanisms of various micro-/nanomaterials, including quantum dots (QDs), metal materials, conducting polymers, metallic oxides, polyanionic compounds, metal-organic frameworks (MOFs) and two-dimensional (2D) materials, are discussed. Especially, the multifunctional structural engineering principles of as-fabricated micro-/nanomaterials, such as vertically aligned structure, heterostructure, core-shell structure, and tunable microsphere, are introduced. Subsequently, the electrochemical energy storage application of as-prepared multifunctional micro-/nanomaterials is clarified in supercapacitors, lithium-ion batteries, sodium-ion batteries, all-vanadium redox flow batteries, and dielectric capacitors. Finally, the current problems and future forecasts are illustrated.
Collapse