1
|
Mehara P, Sharma P, Bains R, Sharma AK, Das P. Pd/C-catalyzed regiodivergent hydrocarboxylation and esterification of alkynes. Chem Sci 2024:d4sc05549g. [PMID: 39464612 PMCID: PMC11499951 DOI: 10.1039/d4sc05549g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
An unprecedented and highly reactive Pd/C catalytic system has been introduced for the regiodivergent hydrocarboxylation of terminal alkynes to selectively afford various acrylic and cinnamic acids employing oxalic acid as a CO source as well as a promoter for the formation of the active Pd-H complex. Herein, the formation of cinnamic acid is proposed to follow a unique anti-Markovnikov hydroiodination mechanism and the formation of acrylic acid might follow the traditional hydrocarboxylation pathway. Additionally, internal alkynes undergo hydrocarboxylation and carbonylative esterification with aliphatic alcohols to yield different α,β-unsaturated acids and esters respectively. The designed strategies were successfully leveraged for a diverse class of α,β-unsaturated acids and esters with excellent selectivity and yields under mild reaction conditions. Furthermore, the acid functionalization of complicated naturally derived alkynes, utilizing economical and bench-stable oxalic acid and a commercially accessible reusable catalyst with gram-scale applicability are the additional benefits of the established protocol.
Collapse
Affiliation(s)
- Pushkar Mehara
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 H.P. India +91-1894-230433
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Poonam Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 H.P. India +91-1894-230433
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Rohit Bains
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 H.P. India +91-1894-230433
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Ajay Kumar Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 H.P. India +91-1894-230433
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 H.P. India +91-1894-230433
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
2
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Dai C, Chen Y, Xu J, Zheng X, Chen H, Fu H, Li R. Highly selective and additive-free Pd(OAc) 2/CPP catalyzed hydroaminocarbonylation of alkynes. Org Biomol Chem 2024; 22:5534-5539. [PMID: 38915273 DOI: 10.1039/d4ob00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Herein, the synthesis of branched α,β-unsaturated amides by a hydroaminocarbonylation reaction of alkynes with various amine substrates such as aromatic amines, aliphatic amines, solid amine sources like NH4HCO3, and even strongly basic piperidines is reported, using a Pd(OAc)2/hybrid N-heterocyclic carbene-phosphine-phosphine (CPP) catalytic system. The reactions feature no additives, wide substrate scope, high selectivity (b/l > 99 : 1) and excellent yields. Mechanistic studies have disclosed that the reaction takes place via a palladium hydride pathway. CPP adopts a hybrid bidentate ligand conformation with a carbene-phosphine coordination mode, wherein one phosphorus atom remains externally accessible, potentially serving as a stabilizing auxiliary during catalytic cycles.
Collapse
Affiliation(s)
- Chenghui Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| | - Yan Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Wang B, Shen C, Dong K. Ligand-Controlled Regiodivergent Alkoxycarbonylation of Trifluoromethylthiolated Internal Alkynes. Org Lett 2024; 26:3628-3633. [PMID: 38652586 DOI: 10.1021/acs.orglett.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Controlling the regioselectivity for the alkoxycarbonylation of unsymmetric internal alkynes is challenging. Herein, a palladium-catalyzed ligand-controlled regiodivergent alkoxycarbonylation of internal trifluoromethylthiolated alkynes was achieved. A series of α- or β-SCF3 acrylates from the same trifluoromethylthiolated alkyne were obtained with moderate to high yield and regioselectivity.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Kim J, Müller S, Ritter T. Synthesis of α-Branched Enones via Chloroacylation of Terminal Alkenes. Angew Chem Int Ed Engl 2023; 62:e202309498. [PMID: 37786992 DOI: 10.1002/anie.202309498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Here, we show the conversion of unactivated alkenes into α-branched enones via regioselective chloroacylation with acyl chlorides. The method relies upon the initial in situ generation of chlorine radicals directly from the acyl chloride precursor under cooperative nickel/photoredox catalysis. Subsequent HCl elimination provides enones and α,β-unsaturated esters that are not accessible via the conventional acylation approaches that provide the other, linear constitutional isomer.
Collapse
Affiliation(s)
- Jungwon Kim
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sven Müller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Ru T, Ning Y, Liu D, Tao Y, Wang J, Chen FE. Hydrogen-free palladium-catalyzed intramolecular anti-Markovnikov hydroaminocarbonylation of 2-(1-methylvinyl)anilines. Chem Commun (Camb) 2023; 59:3755-3758. [PMID: 36912028 DOI: 10.1039/d2cc06836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The palladium-catalyzed intramolecular hydroaminocarbonylation of 2-(1-methylvinyl)aniline derivatives has been achieved using dppp (1,3-bis(diphenylphosphino)propane) as a ligand under hydrogen-free conditions. The reaction involves the generation of an active palladium hydride species with a catalytic amount of TsOH. This amide bond formation reaction was applied to the synthesis of various 4-substituted 3,4-dihydroquinolone derivatives with both high yield and regioselectivity.
Collapse
Affiliation(s)
- Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Ding Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Jiaqi Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
7
|
Yu C, Yu Y, Sun L, Li X, Liu Z, Ke M, Chen F. Highly diastereo- and enantioselective synthesis of multisubstituted allylic amino acid derivatives by allylic alkylation of a chiral glycine-based nickel complex and vinylethylene carbonates. Org Biomol Chem 2022; 20:4894-4899. [PMID: 35678149 DOI: 10.1039/d2ob00726f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric synthesis of multisubstituted allylic amino acid derivatives was accomplished by the allylic alkylation of a chiral glycine-based nickel complex with vinylethylene carbonates. High enantioselectivities and diastereoselectivities were obtained under mild reaction conditions. The gram-scale synthesis was carried out with a good yield and high enantioselectivity, indicating that the method is a highly efficient route to chiral multisubstituted allylic amino acid derivatives.
Collapse
Affiliation(s)
- Chao Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Longwu Sun
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fener Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
8
|
Deng Z, Han S, Ke M, Ning Y, Chen FE. Ligand-enabled palladium-catalyzed hydroesterification of vinyl arenes with high linear selectivity to access 3-arylpropanoate esters. Chem Commun (Camb) 2022; 58:3921-3924. [PMID: 35244116 DOI: 10.1039/d2cc00228k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Palladium-catalyzed linear-selective hydroesterification of vinyl arenes with alcohols enabled by diphosphine ligands derived from bis[2-(diphenylphosphino)ethyl]amides has been developed. A variety of 3-arylpropanoate esters were obtained in high yields and regioselectivity. The robustness of this methodology was further demonstrated by the efficient gram-scale synthesis of the ethyl 3-phenylpropanoate as a precursor to hydrocinnamic acid.
Collapse
Affiliation(s)
- Zhixin Deng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, 430205 Wuhan, China
| | - Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, 430205 Wuhan, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| |
Collapse
|
9
|
Zhao KC, Liu L, Chen XC, Yao YQ, Guo L, Lu Y, Zhao XL, Liu Y. Multiple-Functional Diphosphines: Synthesis, Characterization, and Application to Pd-Catalyzed Alkoxycarbonylation of Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai-Chun Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Lei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Chao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yin-Qing Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Lin Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
10
|
Electrocatalytic CO2 Reduction and H2 Evolution by a Copper (II) Complex with Redox-Active Ligand. Molecules 2022; 27:molecules27041399. [PMID: 35209188 PMCID: PMC8874443 DOI: 10.3390/molecules27041399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The process of electrocatalytic CO2 reduction and H2 evolution from water, regarding renewable energy, has become one of the global solutions to problems related to energy consumption and environmental degradation. In order to promote the electrocatalytic reactivity, the study of the role of ligands in catalysis has attracted more and more attention. Herein, we have developed a copper (II) complex with redox-active ligand [Cu(L1)2NO3]NO3 (1, L1 = 2-(6-methoxypyridin-2-yl)-6-nitro-1h-benzo [D] imidazole). X-ray crystallography reveals that the Cu ion in cation of complex 1 is coordinated by two redox ligands L1 and one labile nitrate ligand, which could assist the metal center for catalysis. The longer Cu-O bond between the metal center and the labile nitrate ligand would break to provide an open coordination site for the binding of the substrate during the catalytic process. The electrocatalytic investigation combined with DFT calculations demonstrate that the copper (II) complex could homogeneously catalyze CO2 reduction towards CO and H2 evolution, and this could occur with great performance due to the cooperative effect between the central Cu (II) ion and the redox- active ligand L1. Further, we discovered that the added proton source H2O and TsOH·H2O (p-Toluenesulfonic acid) could greatly enhance its electrocatalytic activity for CO2 reduction and H2 evolution, respectively.
Collapse
|
11
|
Yang J, Kong D, Wu H, Shen Z, Zou H, Zhao W, Huang G. Palladium-Catalyzed Regio- and Chemoselective Double-Alkoxycarbonylation of 1,3-Diynes: A Computational Study. Org Chem Front 2022. [DOI: 10.1039/d2qo00122e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The palladium-catalyzed double-alkoxycarbonylation of 1,3-diynes provides an efficient approach for the selective synthesis of 1,2,3,4-tetrasubstituted conjugated dienes. In this report, density functional theory calculations have been performed to elucidate the...
Collapse
|