1
|
Kandappa SK, Ahuja S, Singathi R, Valloli LK, Baburaj S, Parthiban J, Sivaguru J. Using Restricted Bond Rotations to Enforce Excited State Behavior of Organic Molecules. Synlett 2022. [DOI: 10.1055/a-1785-6910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This account highlights the role of restricted bond rotations to influence excited state reactivity of organic molecules. It highlights photochemical reactivity of various organic molecules and the design strategies that could be exploited by chemists to utilize restricted bond rotations to uncover new excited state reactivity and achieve selectivity.
Collapse
Affiliation(s)
- Sunil Kumar Kandappa
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| | - Sapna Ahuja
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| | - Ravichandranath Singathi
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| | - Lakshmy Kannadi Valloli
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| | - Sruthy Baburaj
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| | - Jayachandran Parthiban
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| | - Jayaraman Sivaguru
- Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, United States
| |
Collapse
|