1
|
Fu L, Liu K, Lyu Z, Sun Y, Cai J, Wang S, Wang Q, Xie S. Two-dimensional template-directed synthesis of one-dimensional kink-rich Pd 3Pb nanowires for efficient oxygen reduction. J Colloid Interface Sci 2023; 634:827-835. [PMID: 36565624 DOI: 10.1016/j.jcis.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Developing facile synthetic strategies toward ultrafine one-dimensional (1D) nanowires (NWs) with rich catalytic hot spots is pivotal for exploring effective heterogeneous catalysts. Herein, we demonstrate a two-dimensional (2D) template-directed strategy for synthesizing 1D kink-rich Pd3Pb NWs with abundant grain boundaries to serve as high-efficiency electrocatalysts toward oxygen reduction reaction (ORR). In this one-pot synthesis, ultrathin Pd nanosheets were initially generated, which then served as self-sacrificial 2D nano-templates. A dynamic equilibrium growth was subsequently established on the 2D Pd nanosheets through the center-selected etching of Pd atoms and edge-preferred co-deposition of Pd/Pb atoms. This was followed by the oriented attachment of the generated Pd/Pb alloy nanograins and fragments. Thus, kink-rich Pd3Pb NWs with rich grain boundary defects were obtained in high yield, and these NWs were used as electrocatalytic active catalysts. The surface electronic interaction between Pd and Pb atoms effectively decreased the surface d-band center to weaken the binding of oxygen-containing intermediates toward improved ORR kinetics. Specifically, the kink-rich Pd3Pb NWs/C catalyst delivered outstanding ORR mass activity and specific activity (2.26 A⋅mgPd-1 and 2.59 mA⋅cm-2, respectively) in an alkaline solution. These values were respectively 13.3 and 10.8 times those of state-of-the-art commercial Pt/C catalyst. This study provides an innovative strategy for fabricating defect-rich low-dimensional nanocatalysts for efficient energy conversion catalysis.
Collapse
Affiliation(s)
- Luhong Fu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kai Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
2
|
Guo K, Teng Y, Guo R, Meng Y, Fan D, Hao Q, Zhang Y, Li Y, Xu D. Engineering ultrathin PdAu nanoring via a facile process for electrocatalytic ethanol oxidation. J Colloid Interface Sci 2022; 628:53-63. [PMID: 35973257 DOI: 10.1016/j.jcis.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Ultrathin nanoframes with more available electrocatalytic active sites on both internal and external surfaces have attracted great attention especially in the field of electrocatalysis. Herein, we report a facile process to prepare PdAu nanorings (NRs) in aqueous solution without adding any organic ligands. The growth mechanism of PdAu NRs was explored in detail. The Au precursors were reduced into Au clusters around the edges of Pd nanosheets (NSs) via galvanic replacement, then the center of Pd NSs was oxidatively etched by Cl-/O2, and finally the Pd and Au atoms on the edge sites were rearranged to form uniform PdAu alloy. PdAu NRs with different ratios and ternary PdAuPt NRs could be easily prepared using this strategy. Owing to the synergistically structural and compositional advantages, Pd79Au21 NRs exhibited higher electrocatalytic activity and stability, as well as low activation energy (Ea) for the ethanol electrooxidation reaction.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuxiang Teng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruonan Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yang Meng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dongping Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiaoqiao Hao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|