1
|
Tacconi L, Leiszner SS, Briganti M, Cucinotta G, Otero E, Mannini M, Perfetti M. Temperature Induced Reversible Switching of the Magnetic Anisotropy in a Neodymium Complex Adsorbed on Graphite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401627. [PMID: 38773906 DOI: 10.1002/smll.202401627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Controlling the magnetic anisotropy of molecular layers assembled on a surface is one of the challenges that needs to be addressed to create the next-generation spintronic devices. Recently, metal complexes that show a reversible solid-state switch of their magnetic anisotropy in response to physical stimuli, such as temperature and magnetic field, have been discovered. The complex Nd(trensal) (H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine) is predicted to exhibit such property. An ultra-thin film of Nd(trensal) is deposited on highly ordered pyrolytic graphite as a proof-of-concept system to show that this property can be retained at the nanoscale on a layered material. By combining single crystal magnetometric measurements and synchrotron X-ray-based absorption techniques, supported by multiplet ligand field simulations based on the trigonal crystal field surrounding the lanthanide centre, it is demonstrated that changing the temperature reverses the magnetic anisotropy of an ordered film of Nd(trensal), thus opening significant perspectives for the realization of a novel family of temperature-controlled molecular spintronic devices.
Collapse
Affiliation(s)
- Leonardo Tacconi
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Sofie S Leiszner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | - Matteo Briganti
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Giuseppe Cucinotta
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Edwige Otero
- Synchrotron, SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Matteo Mannini
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
2
|
Sorrentino AL, Poggini L, Serrano G, Cucinotta G, Cortigiani B, Malavolti L, Parenti F, Otero E, Arrio MA, Sainctavit P, Caneschi A, Cornia A, Sessoli R, Mannini M. Assembling Fe 4 single-molecule magnets on a TiO 2 monolayer. NANOSCALE 2024; 16:14378-14386. [PMID: 38993100 DOI: 10.1039/d4nr02234c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.
Collapse
Affiliation(s)
- Andrea Luigi Sorrentino
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Poggini
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
- Institute for Chemistry of Organo-Metallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Serrano
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Giuseppe Cucinotta
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Brunetto Cortigiani
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Luigi Malavolti
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Francesca Parenti
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Edwige Otero
- Synchrotron-SOLEIL, L'Orme des Merisiers, 91192 Saint-Aubin, France
| | - Marie-Anne Arrio
- CNRS UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université/MNHN, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Philippe Sainctavit
- Synchrotron-SOLEIL, L'Orme des Merisiers, 91192 Saint-Aubin, France
- CNRS UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université/MNHN, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Andrea Caneschi
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
- Institute for Chemistry of Organo-Metallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, FI, Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
3
|
Bolivar-Pineda LM, Mendoza-Domínguez CU, Rudolf P, Basiuk EV, Basiuk VA. Solvothermal Synthesis of Rare Earth Bisphthalocyanines. Molecules 2024; 29:2690. [PMID: 38893564 PMCID: PMC11173967 DOI: 10.3390/molecules29112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Rare earth bisphthalocyanines (MPc2) are of particular interest because of their behavior as single-molecular magnets, which makes them suitable for applications in molecular spintronics, high-density data storage and quantum computation. Nevertheless, MPc2 are not commercially available, and the synthesis routes are mainly focused on obtaining substituted phthalocyanines. Two preparation routes depend on the precursor: synthesis from phthalonitrile (PN) and the metalation of free or dilithium phthalocyanine (H2Pc and Li2Pc). In both options, byproducts such as free-base phthalocyanine and in the first route additional PN oligomers are generated, which influence the MPc2 yield. There are three preparation methods for these routes: heating, microwave radiation and reflux. In this research, solvothermal synthesis was applied as a new approach to prepare yttrium, lanthanum, gadolinium and terbium unsubstituted bisphthalocyanines using Li2Pc and the rare earth(III) acetylacetonates. Purification by sublimation gave high product yields compared to those reported, namely 68% for YPc2, 43% for LaPc2, 63% for GdPc2 and 62% for TbPc2, without any detectable presence of H2Pc. Characterization by infrared, Raman, ultraviolet-visible and X-ray photoelectron spectroscopy as well as elemental analysis revealed the main featuresof the four bisphthalocyanines, indicating the success of the synthesis of the complexes.
Collapse
Affiliation(s)
- Lina M. Bolivar-Pineda
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlos U. Mendoza-Domínguez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elena V. Basiuk
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico;
| | - Vladimir A. Basiuk
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Mezzomo L, Lorenzi R, Mauri M, Simonutti R, D’Arienzo M, Wi TU, Ko S, Lee HW, Poggini L, Caneschi A, Mustarelli P, Ruffo R. Unveiling the Role of PEO-Capped TiO 2 Nanofiller in Stabilizing the Anode Interface in Lithium Metal Batteries. NANO LETTERS 2022; 22:8509-8518. [PMID: 36315593 PMCID: PMC9650764 DOI: 10.1021/acs.nanolett.2c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Lithium metal batteries (LMBs) will be a breakthrough in automotive applications, but they require the development of next-generation solid-state electrolytes (SSEs) to stabilize the anode interface. Polymer-in-ceramic PEO/TiO2 nanocomposite SSEs show outstanding properties, allowing unprecedented LMBs durability and self-healing capabilities. However, the mechanism underlying the inhibition/delay of dendrite growth is not well understood. In fact, the inorganic phase could act as both a chemical and a mechanical barrier to dendrite propagation. Combining advanced in situ and ex situ experimental techniques, we demonstrate that oligo(ethylene oxide)-capped TiO2, although chemically inert toward lithium metal, imparts SSE with mechanical and dynamical properties particularly favorable for application. The self-healing characteristics are due to the interplay between mechanical robustness and high local polymer mobility which promotes the disruption of the electric continuity of the lithium dendrites (razor effect).
Collapse
Affiliation(s)
- Lorenzo Mezzomo
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
| | - Roberto Lorenzi
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
| | - Michele Mauri
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
| | - Roberto Simonutti
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
| | - Massimiliano D’Arienzo
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
| | - Tae-Ung Wi
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangho Ko
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Wook Lee
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Lorenzo Poggini
- Consiglio
Nazionale delle Ricerche − CNR Istituto di Chimica dei Composti
OrganoMetallici − ICCOM, 50019 Sesto Fiorentino (Firenze), Italy
| | - Andrea Caneschi
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Piercarlo Mustarelli
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) −
Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia
dei Materiali (INSTM), 50121 Firenze, Italy
| | - Riccardo Ruffo
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, 20125 Milano, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) −
Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia
dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
5
|
Magnetic molecules as local sensors of topological hysteresis of superconductors. Nat Commun 2022; 13:3838. [PMID: 35788608 PMCID: PMC9253336 DOI: 10.1038/s41467-022-31320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
Superconductors and magnetic materials, including molecules, are key ingredients for quantum computing and spintronics. However, only a little is known about how these materials interact in multilayer nanostructures like the hybrid architectures nowadays under development for such advanced applications. Here, we show that a single layer of magnetic molecules, Terbium(III) bis-phthalocyaninato (TbPc2) complexes, deposited under controlled UHV conditions on a superconducting Pb(111) surface is sensitive to the topology of the intermediate state of the superconductor, namely to the presence and evolution of superconducting and normal domains due to screening and penetration of an external magnetic field. The topological hysteresis of the superconducting substrate imprints a local evolution of the magnetisation of the TbPc2 molecules in the monolayer. Element and surface selective detection is achieved by recording the X-ray magnetic circular dichroism of the Tb atoms. This study reveals the impressive potential of magnetic molecules for sensing local magnetic field variations in molecular/superconductor hybrid devices, including spin resonators or spin injecting and spin filtering components for spintronics applications.
Collapse
|