1
|
Willis SA, Flannigan DJ. Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy. Chemphyschem 2025; 26:e202401032. [PMID: 39804845 DOI: 10.1002/cphc.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun. Specifically, we have explored the impact of experimentally adjustable parameters on the time-of-flight (TOF), the collection efficiency (CE), and the temporal width of ultrashort photoelectron packets. The adjustable parameters include the Wehnelt aperture diameter (DW), the cathode set-back position (Ztip), and the position of the femtosecond laser on the Wehnelt aperture surface relative to the optic axis (Rphoto). Notable findings include significant sensitivity of TOF to DW and Ztip, as well as non-intuitive responses of CE and temporal width to varying Rphoto. As a means to improve accessibility, practical implications and recommendations are emphasized wherever possible.
Collapse
Affiliation(s)
- Simon A Willis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Quigley F, Downing C, McGuinness C, Jones L. A Retrofittable Photoelectron Gun for Low-Voltage Imaging Applications in the Scanning Electron Microscope. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1610-1617. [PMID: 37490647 DOI: 10.1093/micmic/ozad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
Low-voltage scanning electron microscopy is a powerful tool for examining surface features and imaging beam-sensitive materials. Improving resolution during low-voltage imaging is then an important area of development. Decreasing the effect of chromatic aberration is one solution to improving the resolution and can be achieved by reducing the energy spread of the electron source. Our approach involves retrofitting a light source onto a thermionic lanthanum hexaboride (LaB6) electron gun as a cost-effective low energy-spread photoelectron emitter. The energy spread of the emitter's photoelectrons is theorized to be between 0.11 and 0.38 eV, depending on the photon energy of the ultraviolet (UV) light source. Proof-of-principle images have been recorded using this retrofitted photoelectron gun, and an analysis of its performance is presented.
Collapse
Affiliation(s)
- Frances Quigley
- School of Physics, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Clive Downing
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Cormac McGuinness
- School of Physics, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - Lewys Jones
- School of Physics, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
3
|
Flannigan DJ, VandenBussche EJ. Pulsed-beam transmission electron microscopy and radiation damage. Micron 2023; 172:103501. [PMID: 37390662 DOI: 10.1016/j.micron.2023.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
We review the use of pulsed electron-beams in transmission electron microscopes (TEMs) for the purpose of mitigating specimen damage. We begin by placing the importance of TEMs with respect to materials characterization into proper context, and we provide a brief overview of established methods for reducing or eliminating the deleterious effects of beam-induced damage. We then introduce the concept of pulsed-beam TEM, and we briefly describe the basic methods and instrument configurations used to create so-called temporally structured electron beams. Following a brief overview of the use of high-dose-rate pulsed-electron beams in cancer radiation therapy, we review historical speculations and more recent compelling but mostly anecdotal findings of a pulsed-beam TEM damage effect. This is followed by an in-depth technical review of recent works seeking to establish cause-and-effect relationships, to conclusively uncover the presence of an effect, and to explore the practicality of the approach. These studies, in particular, provide the most compelling evidence to date that using a pulsed electron beam in the TEM is indeed a viable way to mitigate damage. Throughout, we point out current gaps in understanding, and we conclude with a brief perspective of current needs and future directions.
Collapse
Affiliation(s)
- David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Du DX, Simjanoska M, Fitzpatrick AWP. Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales. J Struct Biol 2023; 215:107941. [PMID: 36773734 DOI: 10.1016/j.jsb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
5
|
Kim YJ, Nho HW, Ji S, Lee H, Ko H, Weissenrieder J, Kwon OH. Femtosecond-resolved imaging of a single-particle phase transition in energy-filtered ultrafast electron microscopy. SCIENCE ADVANCES 2023; 9:eadd5375. [PMID: 36706188 PMCID: PMC9882981 DOI: 10.1126/sciadv.add5375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Using an energy filter in transmission electron microscopy has enabled elemental mapping at the atomic scale and improved the precision of structural determination by gating inelastic and elastic imaging electrons, respectively. Here, we use an energy filter in ultrafast electron microscopy to enhance the temporal resolution toward the domain of atomic motion. Visualizing transient structures with femtosecond temporal precision was achieved by selecting imaging electrons in a narrow energy distribution from dense chirped photoelectron packets with broad longitudinal momentum distributions and thus typically exhibiting picosecond durations. In this study, the heterogeneous ultrafast phase transitions of vanadium dioxide (VO2) nanoparticles, a representative strongly correlated system, were filmed and attributed to the emergence of a transient, low-symmetry metallic phase caused by different local strains. Our approach enables electron microscopy to access the time scale of elementary nuclear motion to visualize the onset of the structural dynamics of matter at the nanoscale.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Shaozheng Ji
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Hyejin Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jonas Weissenrieder
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Du DX, Fitzpatrick AW. Design of an ultrafast pulsed ponderomotive phase plate for cryo-electron tomography. CELL REPORTS METHODS 2023; 3:100387. [PMID: 36814846 PMCID: PMC9939428 DOI: 10.1016/j.crmeth.2022.100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Ponderomotive phase plates have shown that temporally consistent phase contrast is possible within electron microscopes via high-fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find through forward-stepping finite element models that picosecond or shorter interactions are required for meaningful fluences and phase shifts, with higher pulse energies and smaller beam waists leading to predicted higher fluences. An additional model based on quasi-classical assumptions is used to discover the shape of the phase plate by incorporating the oscillatory nature of the electric field. From these results, we find the transient nature of the laser pulses removes the influence of Kapitza-Dirac diffraction patterns that appear in the static resonator cases. We conclude by predicting that a total laser pulse energy of 8.7 μJ is enough to induce the required π/2 phase shift for Zernike-like phase microscopy.
Collapse
Affiliation(s)
- Daniel X. Du
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W.P. Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
7
|
Curtis WA, Willis SA, Flannigan DJ. Single-photoelectron collection efficiency in 4D ultrafast electron microscopy. Phys Chem Chem Phys 2022; 24:14044-14054. [PMID: 35640169 DOI: 10.1039/d2cp01250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In femtosecond (fs) 4D ultrafast electron microscopy (UEM), a tradeoff is made between photoelectrons per packet and time resolution. One consequence of this can be longer-than-desirable acquisition times for low-density packets, and particularly for low repetition rates when complete photothermal dissipation is required. Thus, gaining an understanding of photoelectron trajectories in the gun region is important for identifying factors that limit collection efficiency (CE; fraction of photoelectrons that enter the illumination system). Here, we continue our work on the systematic study of photoelectron trajectories in the gun region of a Thermo Fisher/FEI Tecnai Femto UEM, focusing specifically on CE in the single-electron regime. Using General Particle Tracer, calculated field maps, and the exact architecture of the Tecnai Femto UEM, we simulated the effects of fs laser parameters and key gun elements on CE. The results indicate CE strongly depends upon the laser spot size on the source, the (unbiased) Wehnelt aperture diameter, and the incident photon energy. The CE dispersion with laser spot size is found to be strongly dependent on aperture diameter, being nearly dispersionless for the largest apertures. A gun crossover is also observed, with the beam-waist position being dependent on the aperture diameter, further illustrating that the Wehnelt aperture acts as a simple, fixed electrostatic lens in UEM mode. This work provides further insights into the operational aspects of fs 4D UEM.
Collapse
Affiliation(s)
- Wyatt A Curtis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Simon A Willis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Chen J, Flannigan DJ. A quantitative method for in situ pump-beam metrology in 4D ultrafast electron microscopy. Ultramicroscopy 2022; 234:113485. [PMID: 35151041 DOI: 10.1016/j.ultramic.2022.113485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
We report a method for measuring spot size and focusing conditions of the femtosecond (fs) excitation laser in situ at the specimen location in 4D ultrafast electron microscopy (UEM). The method makes use of threshold laser ablation behaviors of thin amorphous carbon membranes. For Gaussian beam profiles and for ablation threshold fluence values, we analytically derive expressions describing the relationship between ablated hole size and the actual laser spot size. Using these expressions, we developed experimental procedures for characterizing the shape and spot size of the pump beam at the specimen. We demonstrate the viability of the approach for incident excitation wavelengths of 343 nm and 515 nm, thus illustrating the applicability of the method to a range of optical wavelengths without modification. Further, we show that by measuring ablated hole size as a function of focusing condition, a full metrological characterization of the Gaussian beam propagation properties can be performed. Finally, we find good agreement for spot sizes determined with this method and with those determined by extrapolation from measurements taken outside the microscope column. Overall, this method is a simple, cost-effective means for accurate and precise determination of key pump-beam parameters in situ at the specimen location in UEM experiments.
Collapse
Affiliation(s)
- Jialiang Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
9
|
Li WH, Duncan CJR, Andorf MB, Bartnik AC, Bianco E, Cultrera L, Galdi A, Gordon M, Kaemingk M, Pennington CA, Kourkoutis LF, Bazarov IV, Maxson JM. A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:024302. [PMID: 35350376 PMCID: PMC8934190 DOI: 10.1063/4.0000138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 06/12/2023]
Abstract
We report the design and performance of a time-resolved electron diffraction apparatus capable of producing intense bunches with simultaneously single digit micrometer probe size, long coherence length, and 200 fs rms time resolution. We measure the 5d (peak) beam brightness at the sample location in micro-diffraction mode to be 7 × 10 13 A / m 2 rad 2 . To generate high brightness electron bunches, the system employs high efficiency, low emittance semiconductor photocathodes driven with a wavelength near the photoemission threshold at a repetition rate up to 250 kHz. We characterize spatial, temporal, and reciprocal space resolution of the apparatus. We perform proof-of-principle measurements of ultrafast heating in single crystal Au samples and compare experimental results with simulations that account for the effects of multiple scattering.
Collapse
Affiliation(s)
- W. H. Li
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - C. J. R. Duncan
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - M. B. Andorf
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - A. C. Bartnik
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - E. Bianco
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| | - L. Cultrera
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - A. Galdi
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - M. Gordon
- University of Chicago, Chicago, Illinois 60637, USA
| | - M. Kaemingk
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - C. A. Pennington
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | | | - I. V. Bazarov
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - J. M. Maxson
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|