1
|
Qin L, Liu R, Sagan F, Zhang Z, Zhao L, Mitoraj M, Frenking G. The strongest dative bond in main-group compounds. Theoretical study of OAeF - (Ae = Be-Ba). Phys Chem Chem Phys 2024; 26:24294-24313. [PMID: 39283108 DOI: 10.1039/d4cp01909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Quantum chemical calculations of the anions OAeF- (Ae = Be-Ba) have been carried out using ab initio methods at the CCSD(T)/def2-TZVPP level and density functional theory employing BP86 with various basis sets. The equilibrium structures have linear geometries for Ae = Be and Mg but they are strongly bent for Ae = Sr and Ba while the calcium species has a quasi-linear structure with a very low bending potential. The calculated bond dissociation energies suggest a record-high BDE of De = 144.08 kcal mol-1 for OBeF- at the CCSD(T)/def2-TZVPP level, which is the strongest BDE for a dative bond that has been found so far. The BDE of the heavier homologues have a continuously decreasing order for Ae with Be > Mg (113.01 kcal mol-1) > Ca (84.06 kcal mol-1) > Sr (72.06 kcal mol-1) > Ba (60.00 kcal mol-1). The calculation of the charge distribution reveals a significant charge donation OAe ← F- with a declining sequence for the heavier atoms Ae. The oxygen atom in OAeF- carries always a higher partial charge than the fluorine atom, which contradicts the standard electronegativities of the atoms. The surprising partial charges are explained with the bonding situation of the atoms in the actual electronic structure. The bonding analysis of the OAe-F- bonds using the EDA-NOCV method shows that the bonds have much more electrostatic character than the Ae-F- bonds in the diatomic anions. This finding is supported by the results of the LED partitioning approach. The dative interactions have three major and one minor component. The assignment of a quadruple bond for the heavier species with Ae = Ca, Sr, Ba is not reasonable. The driving force for the bent geometries is the accumulation of electronic charge in the lone-pair region at the Ae atoms, which enhances the electrostatic attraction with the other atoms. An adequate description of the bonding situation is given by the formula O--Ae+ ← F-.
Collapse
Affiliation(s)
- Lei Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ruiqin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Filip Sagan
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - Zhaoyin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mariusz Mitoraj
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - Gernot Frenking
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany.
| |
Collapse
|
2
|
Wu P, Yu X, Cheng L, Wang K. Lewis Acid-Base Pairs: The Bonding Rule of Closed-Shell M···M' Interactions (M = HgII/PdII; M' = AgI/AuI). J Phys Chem A 2024; 128:6362-6372. [PMID: 38984404 DOI: 10.1021/acs.jpca.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Metallophilic interactions are the widespread interactions in multimetal clusters to orientate closed-shell metal self-assembly form linear, facet, or block clusters. The closed-shell metal cation does not have empty valence orbitals, but is able to attract each other. It is still a conundrum to understand the resource in balancing the strong Coulomb repulsion between two cations. Most traditional descriptions attribute the counterintuitive attractions to London dispersion, Pauli repulsions, and ambiguous orbital interactions. However, neither the dispersion nor the unsourced donor-acceptor interaction can be applied to explain the saturability and directionality in multimetal clusters, where the M···M' structure is the basic molecular unit. Here, we clarify the origination of the covalency in closed-shell metallophilic interactions based on the study of heterobimetallic compounds composed of d10-d8 species (AgI/AuI-PdII) and d10-d10 species (AgI/AuI-HgII) obtained from experiments. The inner d electrons not only participate in the metallophilic interactions but also show different Lewis acidity and basicity in the formation of M···M' structures. The present work not only provides us a novel covalent perspective to visualize the closed-shell M···M' interactions but also unveils the truth of metallophilic interactions.
Collapse
Affiliation(s)
- Panpan Wu
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xinlei Yu
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, P. R. China
| | - Kun Wang
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
3
|
Badri Z, Foroutan-Nejad C. Classical versus Collective Interactions in Asymmetric Trigonal Bipyramidal Alkaline Metal-Boron Halide Complexes. Chemistry 2024; 30:e202400156. [PMID: 38642012 DOI: 10.1002/chem.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Collective interactions are a novel type of chemical bond formed between metals and electron-rich substituents around an electron-poor central atom. So far only a limited number of candidates for having collective interactions are reported. In this work, we extend the newly introduced concept of collective bonding to a series of neutral boron complexes with the general formula M2BX3 (M=Li, Na, and K; X=F, Cl, and Br). Our state-of-the-art ab initio computations suggest that these complexes form trigonal bipyramidal structures with a D3h to C3v distortion along the C3 axis of symmetry. The BX3 unit in the complexes distorts from planar to pyramidal akin to a sp3 hybridized atom. Interestingly, the interaction of the metals with the pyramidal side of BX3, where the lone pair in a hypothetical [BX3]2- should be located, is weaker than the interactions of metals with the inverted side, i. e., the middle of three halogen atoms. The origin of this stronger interaction can be explained by the formation of collective interactions between metals and halogen atoms as we explored via energy decomposition within the context of the theory of interacting quantum atoms, IQA.
Collapse
Affiliation(s)
- Zahra Badri
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
4
|
Pino-Rios R, Báez-Grez R, Foroutan-Nejad C. Anti-electrostatic cation⋯π-hole and cation⋯lp-hole interactions are stabilized via collective interactions. Chem Commun (Camb) 2024; 60:400-403. [PMID: 38079184 DOI: 10.1039/d3cc05451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Collective interactions are a novel type of bond between metals and AX3 fragments with an electropositive central atom, A, and electronegative X substituents. Here, using electrostatic potential maps and state-of-the-art bonding analysis tools we have shown that collective interactions are anti-electrostatic cation⋯π-Hole or cation⋯lp-Hole interactions.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat., Casilla 121, Iquique 1100000, Chile.
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Iquique, 1100000, Chile
| | - Rodrigo Báez-Grez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago 8370146, Chile
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
5
|
Parvathy P, Parameswaran P. Organometallic Allene [(μ-C)(Fe(CO) 4 ) 2 ]: Bridging Carbon Showing Transformation from Classical Electron-Sharing Bonding to Double σ-Donor and Double π-Acceptor Ligation. Chemphyschem 2023; 24:e202300528. [PMID: 37563865 DOI: 10.1002/cphc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
Allenes (R2 C=C=CR2 ) have been traditionally perceived to feature localized orthogonal π-bonds between the carbon centres. We have carried out quantum-mechanical studies of the organometallic allenes envisioned by the isolobal replacement of the terminal CH2 groups by the d8 Fe(CO)4 fragment. Our studies have identified two organometallic allenes viz. D2d symmetric [(μ-C)(Fe(CO)4 )2 ] (2) and D3 symmetric [(μ-C)(Fe(CO)4 )2 ] (3) with trigonal bipyramidal coordination at the Fe atoms. Compound 2 features the bridging carbon atom in an equatorial position with respect to the ligands on the TM centre, while 3 features the central carbon atom in an axial position. The bis-pseudoallylic anionic delocalisation proposed in the C2-C1-C3 spine of organic allene is retained in the organometallic allene 2, and is transformed to a typical three-centre bis-allylic anionic delocalisation in the organometallic allene 3. The topological analysis of electron density also indicates a bis-allylic anionic type delocalisation in the organometallic allenes. The quantitative bonding analysis using the EDA-NOCV method suggests a transition from classical electron-sharing bonding between the central carbon atom and the terminal groups in 1 to donor-acceptor bonding in 3. Meanwhile, both electron-sharing and donor-acceptor bonding models are found to be probable heuristic bonding representations in the organometallic allene 2.
Collapse
Affiliation(s)
- Parameswaran Parvathy
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India
| |
Collapse
|
6
|
Suthar S, Mondal KC. Open shell versus closed shell bonding interaction in cyclopropane derivatives: EDA-NOCV analyses. J Comput Chem 2023; 44:2184-2211. [PMID: 37530758 DOI: 10.1002/jcc.27190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane ring is a very common motif in organic/bio-organic compounds. The chemical bonding of this strained ring is taught to all chemistry students. This three-membered cyclic, C3 ring is quite reactive which has attracted both, synthetic and theoretical chemists to rationalize/correlate its stability and bonding with its reactivity and physical properties over a century. There are a few bonding models (mainly the Bent-Bond model and Walsh model) of this C3 ring that are debated to date. Herein, we have carried out energy decomposition analysis coupled with natural orbital for chemical valence (EDA-NOCV) to study the two most reactive bonds of cyclopropane rings of 49 different organic compounds containing different functional groups to obtain a much deeper bonding insight toward a more general bonding model of this class of compounds. The EDA-NOCV analyses of fragment orbitals and susequent bond formation revealed that the nature of the CC bond of the cyclopropane (splitting two bonds at a time out of three CC bonds) ring is preferred to form two dative covalent CC bonds (between a singlet olefin-fragment and an excited singlet carbene-fragment with a vacant sp2 orbital and a filled p-orbital) for the majority (37/49) of compounds over two covalent electron sharing bonds in some (7/49) compounds (between an excited triplet olefin and triplet carbene), while a few (5/49) compounds show flexibility to adopt either the electron sharing or dative covalent bond as both are equally possible. The effects of functional groups on the nature of chemical bond in cyclopropane rings have been studied in detail. Our bonding analyses are in line with the QTAIM analyses which produce small negative values of the Laplacian, significantly positive values of bond ellipticity, and accumulation of electron densities around the ring critical point of C3 -rings. These corresponding QTAIM parameters of C3 -rings are quite different for CC single bonds of normal hydrocarbons as expected. The chemical bonding in the majority of cyclopropane rings can be very similar to those of metal-olefin systems.
Collapse
Affiliation(s)
- Sonam Suthar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
7
|
Vásquez-Espinal A, Pino-Rios R. Strong carbon - noble gas covalent bond and fluxionality in hypercoordinate compounds. Phys Chem Chem Phys 2023; 25:27468-27474. [PMID: 37800185 DOI: 10.1039/d3cp03576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Thermodynamic, kinetic, and chemical bonding analysis at the coupled cluster level has been carried out for a series of hypercoordinated carbon compounds with formula CH4Ng2+ (Ng = He-Rn). Results show that these compounds could be stable at room temperature and Born-Oppenheimer molecular dynamics simulations (BOMD) in conjunction with activation energies indicate high kinetic stability. In addition, all chemical bonding descriptors agree with a strong C-Ng covalent bond and a bonding pattern similar to that of CH5+. Finally, BOMD simulations showed that these compounds are fluxional, with a continuous formation/breaking of H-H and C-H bonds. To the best of the authors' knowledge, these results represent the first series of fluxional compounds possessing a covalent bond between a main group element and a noble gas atom.
Collapse
Affiliation(s)
- Alejandro Vásquez-Espinal
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Iquique, 1100000, Chile
| |
Collapse
|
8
|
Shaik S, Danovich D, Zare RN. Valence Bond Theory Allows a Generalized Description of Hydrogen Bonding. J Am Chem Soc 2023; 145:20132-20140. [PMID: 37664980 PMCID: PMC10510329 DOI: 10.1021/jacs.3c08196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 09/05/2023]
Abstract
This paper describes the nature of the hydrogen bond (HB), B:---H-A, using valence bond theory (VBT). Our analysis shows that the most important HB interactions are polarization and charge transfer, and their corresponding sum displays a pattern that is identical for a variety of energy decomposition analysis (EDA) methods. Furthermore, the sum terms obtained with the different EDA methods correlate linearly with the corresponding VB quantities. The VBT analysis demonstrates that the total covalent-ionic resonance energy (RECS) of the HB portion (B---H in B:---H-A) correlates linearly with the dissociation energy of the HB, ΔEdiss. In principle, therefore, RECS(HB) can be determined by experiment. The VBT wavefunction reveals that the contributions of ionic structures to the HB increase the positive charge on the hydrogen of the corresponding external/free O-H bonds in, for example, the water dimer compared with a free water molecule. This increases the electric field of the external O-H bonds of water clusters and contributes to bringing about catalysis of reactions by water droplets and in water-hydrophobic interfaces.
Collapse
Affiliation(s)
- Sason Shaik
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Danovich
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Sergeieva T, Demirer TI, Wuttke A, Mata RA, Schäfer A, Linker GJ, Andrada DM. Revisiting the origin of the bending in group 2 metallocenes AeCp 2 (Ae = Be-Ba). Phys Chem Chem Phys 2023. [PMID: 37482883 PMCID: PMC10395002 DOI: 10.1039/d2cp05020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Metallocenes are well-established compounds in organometallic chemistry, and can exhibit either a coplanar structure or a bent structure according to the nature of the metal center (E) and the cyclopentadienyl ligands (Cp). Herein, we re-examine the chemical bonding to underline the origins of the geometry and stability observed experimentally. To this end, we have analysed a series of group 2 metallocenes [Ae(C5R5)2] (Ae = Be-Ba and R = H, Me, F, Cl, Br, and I) with a combination of computational methods, namely energy decomposition analysis (EDA), polarizability model (PM), and dispersion interaction densities (DIDs). Although the metal-ligand bonding nature is mainly an electrostatic interaction (65-78%), the covalent character is not negligible (33-22%). Notably, the heavier the metal center, the stronger the d-orbital interaction with a 50% contribution to the total covalent interaction. The dispersion interaction between the Cp ligands counts only for 1% of the interaction. Despite that orbital contributions become stronger for heavier metals, they never represent the energy main term. Instead, given the electrostatic nature of the metallocene bonds, we propose a model based on polarizability, which faithfully predicts the bending angle. Although dispersion interactions have a fair contribution to strengthen the bending angle, the polarizability plays a major role.
Collapse
Affiliation(s)
- Tetiana Sergeieva
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - T Ilgin Demirer
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Axel Wuttke
- Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.
| | - Ricardo A Mata
- Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.
| | - André Schäfer
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Gerrit-Jan Linker
- MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Diego M Andrada
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| |
Collapse
|
10
|
Šadek V, Sowlati-Hashjin S, Sadjadi S, Karttunen M, Martín-Pendás A, Foroutan-Nejad C. Reply to: On the existence of collective interactions reinforcing the metal-ligand bond in organometallic compounds. Nat Commun 2023; 14:3873. [PMID: 37400455 DOI: 10.1038/s41467-023-39504-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Affiliation(s)
- Vojtech Šadek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - SeyedAbdolreza Sadjadi
- Faculty of Science, Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, N6A 3K7, London, Ontario, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON, N6K 3K7, Canada
| | - Angel Martín-Pendás
- Departamento de Química Física y Analítica, University of Oviedo, 33006, Oviedo, Spain.
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
11
|
Pan S, Frenking G. Comment on "The oxidation state in low-valent beryllium and magnesium compounds" by M. Gimferrer, S. Danés, E. Vos, C. B. Yildiz, I. Corral, A. Jana, P. Salvador and D. M. Andrada, Chem. Sci. 2022, 13, 6583. Chem Sci 2023; 14:379-383. [PMID: 36687352 PMCID: PMC9811506 DOI: 10.1039/d2sc04231b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
We challenge the assignment of the oxidation state +2 for beryllium and magnesium in the complexes Be(cAACDip)2 and Mg(cAACDip)2 as suggested by Gimferrer et al., Chem. Sci. 2022, 13, 6583 in a recent study. A careful review of the data in the ESI contradicts their own statement and shows that the results support the earlier suggestion that the metals are in the zero oxidation state. The authors reported wrong data for the excitation energies of Be and Mg to the 1D (np2) state. We also correct some misleading statements about the EDA method.
Collapse
Affiliation(s)
- Sudip Pan
- Fachbereich Chemie, Philipps-Universität MarburgMarburgGermany
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität MarburgMarburgGermany,Donostia International Physics Center (DIPC)20018 San SebastianSpain,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech UniversityChina
| |
Collapse
|
12
|
Yun GR, Li HX, Cabellos JL, Tiznado W, Cui ZH, Pan S. Hitting the Bull's Eye: Stable HeBeOH + Complex. Chemphyschem 2022; 23:e202200587. [PMID: 36029196 DOI: 10.1002/cphc.202200587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Indexed: 01/05/2023]
Abstract
It is now known that the heavier noble gases (Ng=Ar-Rn) show some varying degrees of reactivity with a gradual increase in reactivity along Ar-Rn. However, because of their very small size and very high ionization potential, helium and neon are the hardest targets to crack. Although few neon complexes are isolated at very low temperatures, helium needs very extreme situations like very high pressure. Here, we find that protonated BeO, BeOH+ can bind helium and neon spontaneously at room temperature. Therefore, extreme conditions like very low temperature and/or high pressure will not be required for their experimental isolation. The Ng-Be bond strength is very high for their heavier homologs and the bond strength shows a gradual increase from He to Rn. Moreover, the Ng-Be attractive energy is almost exclusively originated from the orbital interaction which is composed of one Ng(s/pσ )→BeOH+ σ-donation and two weaker Ng(pπ )→BeOH+ π-donations, except for helium. Helium uses its low-lying vacant 2p orbitals to accept π-electron density from BeOH+ . Previously, such electron-accepting ability of helium was used to explain a somewhat stronger helium bond than neon for neutral complexes. However, the present results indicate that such π-back donations are too weak in nature to decide any energetic trend between helium and neon.
Collapse
Affiliation(s)
- Gai-Ru Yun
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China
| | - Hai-Xia Li
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China
| | - Jose Luis Cabellos
- Universidad Politécnica de Tapachula, Carretera Tapachula a Puerto Madero km 24+300, San Benito, Puerto Madero, C.P. 30830, Tapachula, Chiapas, Mexico
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, postCode/>8370251, Chile
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China.,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, 130023, Changchun, China
| | - Sudip Pan
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China.,Fachbereich Chemie, Philipps-Universitt Marbur, Hans-Meerwein-Straße, 35043, Marburg, Germany
| |
Collapse
|
13
|
Rodstein I, Kelling L, Löffler J, Scherpf T, Sarbajna A, Andrada DM, Gessner VH. Formation of exceptional monomeric YPhos-PdCl 2 complexes with high activities in coupling reactions. Chem Sci 2022; 13:13552-13562. [PMID: 36507159 PMCID: PMC9683020 DOI: 10.1039/d2sc04523k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022] Open
Abstract
The use of well-defined palladium(ii) complexes as precatalysts for C-X cross-coupling reactions has improved the use of palladium catalysts in organic synthesis including large-scale processes. Whereas sophisticated Pd(ii) precursors have been developed in the past years to facilitate catalyst activation as well as the handling of systems with more advanced monophosphine ligands, we herein report that simple PdCl2 complexes function as efficient precatalysts for ylide-substituted phosphines (YPhos). These complexes are readily synthesized from PdCl2 sources and form unprecedented monomeric PdCl2 complexes without the need for any additional coligand. Instead, these structures are stabilized through a unique bonding motif, in which the YPhos ligands bind to the metal through the adjacent phosphine and ylidic carbon site. DFT calculations showed that these bonds are both dative interactions with the stronger interaction originating from the electron-rich phosphine donor. This bonding mode leads to a remarkable stability even towards air and moisture. Nonetheless, the complexes readily form monoligated LPd(0) complexes and thus the active palladium(0) species in coupling reactions. Accordingly, the YPhos-PdCl2 complexes serve as highly efficient precatalysts for a series of C-C and C-X coupling reactions. Despite their simplicity they can compete with the efficiency of more complex and less stable precatalysts.
Collapse
Affiliation(s)
- Ilja Rodstein
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Leif Kelling
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Julian Löffler
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Thorsten Scherpf
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Abir Sarbajna
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Diego M. Andrada
- General and Inorganic Chemistry Department, University of SaarlandCampus C4.166123 SaarbrueckenGermany
| | - Viktoria H. Gessner
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| |
Collapse
|
14
|
Kia R, Heshmatnia F. Structural and theoretical exploring of noncovalent interactions in Chlorido- and Nitrito-rhenium(I) tricarbonyl complexes bearing 2,3-Butadiene-bis(2-nitrobenzylidene)hydrazine Ligand: Intramolecular Re–κ1-endo-ONO(lone pair)…π*(C O) interaction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Demirer T, Morgenstern B, Andrada DM. Synthesis, Structure, and Bonding Analysis of Lewis Base and Lewis Acid/Base‐Stabilized Phosphanylgallanes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- T.Ilgin Demirer
- Saarland University: Universitat des Saarlandes Chemistry Department Campus C4.1 66123 Saarbrücken GERMANY
| | - Bernd Morgenstern
- Saarland University: Universitat des Saarlandes Chemistry Department Campus C4.1 66123 Saarbrücken GERMANY
| | - Diego Marcelo Andrada
- Universitat des Saarlandes Naturwissenschaftlich-Technische Fakultat Fachberei Chemie Campus C4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
16
|
Bickelhaupt FM, Fonseca Guerra C, Mitoraj M, Sagan F, Michalak A, Pan S, Frenking G. Clarifying notes on the bonding analysis adopted by the energy decomposition analysis. Phys Chem Chem Phys 2022; 24:15726-15735. [PMID: 35730200 DOI: 10.1039/d2cp02153f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We discuss the fundamental aspects of the EDA-NOCV method and address some critical comments that have been made recently. The EDA-NOCV method unlike most other methods focuses on the process of bond formation between the interacting species and not just only on the analysis of the finally formed bond. This is demonstrated using LiF as an example. There is a difference between the interactions between the initial species which form the bond and are also the final product of bond cleavage, and the interactions between the fragments in the eventually formed molecule. The flexibility of the method allows the choice of the interacting fragments which helps to identify the charge and electron configuration of the fragments which describe the bond. This is very helpful in cases where the bond may be described with several Lewis structures. We reject the idea that it would be a disadvantage to have "bond path functions" as the energy components in the EDA, which actually indicate the variability of the method. The bonding analysis in a different sequence of the bond formation gives important results for the various questions that can be asked. This is demonstrated by using CH2, CO2 and the formation of a guanine quartet as examples. The fact that a bond is always defined by the bound molecule, the fragments, and their states is universal and deeply physical, as we show here again for various examples. The results of the EDA-NOCV method are in full accordance with the physical mechanism of the chemical bond as revealed by Ruedenberg.
Collapse
Affiliation(s)
- F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, The Netherlands.
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, The Netherlands.
| | - Mariusz Mitoraj
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - F Sagan
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - Artur Michalak
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| |
Collapse
|
17
|
Gimferrer M, Danés S, Vos E, Yildiz CB, Corral I, Jana A, Salvador P, Andrada DM. The oxidation state in low-valent beryllium and magnesium compounds. Chem Sci 2022; 13:6583-6591. [PMID: 35756523 PMCID: PMC9172369 DOI: 10.1039/d2sc01401g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/07/2022] [Indexed: 01/24/2023] Open
Abstract
Low-valent group 2 (E = Be and Mg) stabilized compounds have been long synthetically pursued. Here we discuss the electronic structure of a series of Lewis base-stabilized Be and Mg compounds. Despite the accepted zero(0) oxidation state nature of the group 2 elements of some recent experimentally accomplished species, the analysis of multireference wavefunctions provides compelling evidence for a strong diradical character with an oxidation state of +2. Thus, we elaborate on the distinction between a description as a donor-acceptor interaction L(0) ⇆ E(0) ⇄ L(0) and the internally oxidized situation, better interpreted as a diradical L(-1) → E(+2) ← L(-1) species. The experimentally accomplished examples rely on the strengthened bonds by increasing the π-acidity of the ligand; avoiding this interaction could lead to an unprecedented low-oxidation state.
Collapse
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Gironac/M. Aurelia Capmany 6917003GironaSpain
| | - Sergi Danés
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Gironac/M. Aurelia Capmany 6917003GironaSpain,General and Inorganic Chemistry Department, University of Saarland, Campus C4.166123 SaarbrueckenGermany
| | - Eva Vos
- Departamento de Química, Universidad Autónoma de Madridc/Francisco Tomás y Valiente 728049 Cantoblanco MadridSpain
| | - Cem B. Yildiz
- Department of Medicinal and Aromatic Plants, Aksaray UniversityHacilar harmani 268100 AksarayTurkey
| | - Inés Corral
- Departamento de Química, Universidad Autónoma de Madridc/Francisco Tomás y Valiente 728049 Cantoblanco MadridSpain
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad-500046TelanganaIndia
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Gironac/M. Aurelia Capmany 6917003GironaSpain
| | - Diego M. Andrada
- General and Inorganic Chemistry Department, University of Saarland, Campus C4.166123 SaarbrueckenGermany
| |
Collapse
|
18
|
Sowlati-Hashjin S, Šadek V, Sadjadi S, Karttunen M, Martín-Pendás A, Foroutan-Nejad C. Collective interactions among organometallics are exotic bonds hidden on lab shelves. Nat Commun 2022; 13:2069. [PMID: 35440588 PMCID: PMC9018958 DOI: 10.1038/s41467-022-29504-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
Recent discovery of an unusual bond between Na and B in NaBH3- motivated us to look for potentially similar bonds, which remained unnoticed among systems isoelectronic with NaBH3-. Here, we report a novel family of collective interactions and a measure called exchange-correlation interaction collectivity index (ICIXC; [Formula: see text]) to characterize the extent of collective versus pairwise bonding. Unlike conventional bonds in which ICIXC remains close to one, in collective interactions ICIXC may approach zero. We show that collective interactions are commonplace among widely used organometallics, as well as among boron and aluminum complexes with the general formula [Ma+AR3]b- (A: C, B or Al). In these species, the metal atom interacts more efficiently with the substituents (R) on the central atoms than the central atoms (A) upon forming efficient collective interactions. Furthermore, collective interactions were also found among fluorine atoms of XFn systems (X: B or C). Some of organolithium and organomagnesium species have the lowest ICIXC among the more than 100 studied systems revealing the fact that collective interactions are rather a rule than an exception among organometallic species.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Vojtěch Šadek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - SeyedAbdolreza Sadjadi
- Department of Physics, Faculty of Science, Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6K 3K7, Canada
| | - Angel Martín-Pendás
- Departamento de Química Física y Analítica, University of Oviedo, 33006, Oviedo, Spain.
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
19
|
Haider W, Calvin-Brown MD, Bischoff IA, Huch V, Morgenstern B, Müller C, Sergeieva T, Andrada DM, Schäfer A. Diarylpnictogenyldialkylalanes─Synthesis, Structures, Bonding Analysis, and CO 2 Capture. Inorg Chem 2022; 61:1672-1684. [PMID: 34985262 DOI: 10.1021/acs.inorgchem.1c03494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several new diphenylamino- and diphenylphosphanyldialkylalanes are reported, which were characterized in solution and in the solid state, assisted by in-depth bonding analysis within the DFT framework. In the case of bulky alkyl substituents on the aluminum atom, the species are stable in their monomeric form and were structurally characterized by single crystal X-ray diffraction, expanding the relatively small field of monomeric pnictogenylalanes. In the case of oligomeric diphenylpnictogenyldimethylalanes, their reactivity toward different σ-donor ligands was studied, and several examples of monomeric adducts could be structurally characterized, including the first cyclic(alkyl)(amino)carbene complexes. The reactivity of these CAAC complexes, their oligomeric precursors, and an unstabilized monomeric aminoalane toward CO2 was probed, leading to different insertion products that could be characterized. Additionally, the mechanism was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Wasim Haider
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Marces Devonne Calvin-Brown
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Inga-Alexandra Bischoff
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Volker Huch
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Bernd Morgenstern
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Carsten Müller
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Tetiana Sergeieva
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Diego M Andrada
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - André Schäfer
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| |
Collapse
|
20
|
Zhou K, Zhang YY, Chen XT, Hu SX. 12-Membered Ring Carbides with Stabilization of Actinide Atoms. Inorg Chem 2022; 61:2119-2128. [PMID: 35041785 DOI: 10.1021/acs.inorgchem.1c03341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinide (Th and U) carbides as the potential nuclear fuels in nuclear reactors require basic research in order to understand the thermodynamic stability and performance of these substances. Here we report the structural characterization and bonding analyses of [C12], ThC12, and UC12 clusters via a global-minimum search combined with relativistic quantum chemistry calculations to elucidate the stability and bonding nature of An-C bonds. We predict that these [C12], ThC12, and UC12 compounds have a planar structure with C6h, D12h, and D12h symmetry, respectively. [C12] has a hyperconjugation structure containing alternating single and double bonds. The significant stabilization when forming AnC12 predominantly comes from the electrostatic interaction between An4+ and [C12]4- and also from a certain degree of orbital interaction between the An 5f6d7s valence shell and [C12] π orbitals. The covalent character of the An-C bonds exhibits a direct in-plane σ-type overlap of the C 2p-derived MOs of [C12] and the An 5fϕ AO, thus leading to an unprecedented electronic configuration of d1f1 for U in UC12. Our results present an example of the novel properties that can be expected for actinide compounds and would provide the knowledge required to obtain novel structures of AnC12 in future experiments.
Collapse
Affiliation(s)
- Ke Zhou
- College of Chemistry and Environmental Science & Shaanxi Key Laboratory of Catalysis & Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yang-Yang Zhang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics, Tsinghua University, Beijing 100084, China
| | - Xiao-Tong Chen
- Institute of Nuclear and New Energy Technology & Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.,Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
21
|
Chen L, Feng Q, Wang C, Yin S, Mo Y. Classical Electrostatics Remains the Driving Force for Interanion Hydrogen and Halogen Bonding. J Phys Chem A 2021; 125:10428-10438. [PMID: 34818021 DOI: 10.1021/acs.jpca.1c09250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interanion hydrogen bonding (IAHB) and halogen bonding (IAXB) have emerged as a counterintuitive linker in a range of fascinating applications. Despite the overall repulsive (positive) binding energy, anions are trapped in a local minimum with its corresponding transition state (TS) preventing dissociation. In other words, the adduct of anions is metastable. Seemingly, the electrostatic paradigm and force field description of hydrogen/halogen bonding (HB/XB) are challenged, because of the preconceived Coulombic repulsion. Aiming at an insightful understanding of these interanion phenomena, we employed the energy decomposition approach based on the block-localized wavefunction method (BLW-ED) to investigate a series of exemplary interanion complexes. As expected, the key distinction from the conventional HB/XB lies in the electrostatic interaction, which is not increasingly repulsive as anions gradually approach to each other. Rather, there is a Coulombic barrier at a certain point. After this point, the electrostatic repulsion diminishes with the decreasing distance between anions. Differently, other energy components vary monotonically just like in conventional cases. The nonmonotonic characteristic of the electrostatic interaction in interanion complexes was reproduced using the multipole expansion in AMOEBA polarizable force field in which the state-specified atomic multipoles were adopted. This suggests that the nonmonotonicity can be well interpreted by classical electrostatic theory and there is no conceptual difference between conventional HB/XB and IAHB/IAXB. The stability of IAHB/IAXB depends on the competition between the local attractive HB/XB and the global Coulombic repulsion of net charges, though there is cooperativity between these two contrasting forces. This concise model was supported by the attractive IAHB/IAXB in modified molecular capsules, which exhibit strong quadruple HB/XBs and a considerable distance between charged substituents.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiuyan Feng
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|