1
|
Liang B, Xiao D, Wang SH, Xu X. Novel thiosemicarbazide-based β-carboline derivatives as α-glucosidase inhibitors: Synthesis and biological evaluation. Eur J Med Chem 2024; 275:116595. [PMID: 38875808 DOI: 10.1016/j.ejmech.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
In the quest for potent α-glucosidase inhibitors to combat diabetes, a series of novel thiosemicarbazide-based β-carboline derivatives (CTL1∼36) were synthesized and evaluated. CTL1∼36 exhibited remarkable inhibitory effects against α-glucosidase, with IC50 values ranging from 2.81 to 12.40 μM, significantly surpassing the positive control acarbose (IC50 = 564.28 μM). Notably, CTL26 demonstrated the most potent inhibition (IC50 = 2.81 μM) and was characterized as a non-competitive inhibitor. Through a combination assay with fluorescence quenching, 3D fluorescence spectra, CD spectra, and molecular docking, we elucidated that CTL26 formed a complex with α-glucosidase via hydrogen bondings and hydrophobic interactions, leading to α-glucosidase conformation changes that impaired enzymatic activity. In vivo studies revealed that oral administration of CTL26 (25 and 50 mg/kg/d) reduced fasting blood glucose levels, enhanced glucose tolerance, and ameliorated lipid abnormalities in diabetic mice. These findings positioned CTL26 as a promising candidate for the development of α-glucosidase inhibitors with anti-diabetic potential.
Collapse
Affiliation(s)
- Bingwen Liang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Di Xiao
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
2
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
3
|
Yan X, Zhang C, Gao LX, Liu MM, Yang YT, Yu LJ, Zhou YB, Milaneh S, Zhu YL, Li J, Wang WL. Novel imidazo[1,2,4] triazole derivatives: Synthesis, fluorescence, bioactivity for SHP1. Eur J Med Chem 2024; 265:116027. [PMID: 38128236 DOI: 10.1016/j.ejmech.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 μM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 μM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Min Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Ting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Jie Yu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; Higher Institute of Applied Science and Technology, Department of Pharmaceutical and Chemical Industries, Damascus, 31983, Syria
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Sun YT, Zhang C, Gao LX, Liu MM, Yang Y, Shao A, Zhou YB, Zhu YL, Li J, Wang WL. Design, Synthesis and Evaluation of Fluorescent Properties of Benzothiazole Derivatives. Chemphyschem 2023; 24:e202300159. [PMID: 37349282 DOI: 10.1002/cphc.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Fluorescence imaging is conducive to establish a bridge between molecular biology and clinical medicine, and provides new tools for disease process research, early diagnosis, and efficacy evaluation, because of the advantages of rapid imaging and nondestructive detection. Herein, a series of fluorescent molecules with thiadiazole, or thiazole, or benzothiazole cores were designed and synthesized to develop more excellent fluorescent molecules in bio-imaging. According to theoretical and experimental methods, we found that benzothiazole derivative 14 B with conjugate expansion by (4-aminophenyl) ethynyl group was the most excellent fluorescent molecule among all the investigated compounds and exhibited low cytotoxicity and strong blue and green fluorescence by confocal cell imaging.
Collapse
Affiliation(s)
- Yi-Tao Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Min Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yuting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| |
Collapse
|
5
|
Zhang C, Yang Y, Gan S, Ren A, Zhou YB, Li J, Xiang DJ, Wang WL. Photophysical Exploration of Alectinib and Rilpivirine: Insights from Theory and Experiment. Molecules 2023; 28:6172. [PMID: 37630424 PMCID: PMC10458258 DOI: 10.3390/molecules28166172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the excellent characteristics of fluorescence-based imaging, such as non-invasive detection of biomarkers in vitro and in vivo with high sensitivity, good spatio-temporal resolution and fast response times, it has shown significant prospects in various applications. Compounds with both biological activities and fluorescent properties have the potential for integrated diagnosis and treatment application. Alectinib and Rilpivirine are two excellent drugs on sale that represent a clinically approved targeted therapy for ALK-rearranged NSCLC and have exhibited more favorable safety and tolerance profiles in Phase III clinical trials, ECHO and THRIVE, respectively. The optical properties of these two drugs, Alectinib and Rilpivirine, were deeply explored, firstly through the simulation of molecular structures, electrostatic potential, OPA/TPA and emission spectral properties and experiments on UV-vis spectra, fluorescence and cell imaging. It was found that Alectinib exhibited 7.8% of fluorescence quantum yield at the 450 nm excited wavelength, due to a larger electronic transition dipole moment (8.41 Debye), bigger charge transition quantity (0.682 e) and smaller reorganization energy (2821.6 cm-1). The stronger UV-vis spectra of Rilpivirine were due to a larger electron-hole overlap index (Sr: 0.733) and were also seen in CDD plots. Furthermore, Alectinib possessed obvious active two-photon absorption properties (δmaxTPA* ϕ = 201.75 GM), which have potential TPA imaging applications in bio-systems. Lastly, Alectinib and Rilpivirine displayed green fluorescence in HeLa cells, suggesting the potential ability for biological imaging. Investigation using theoretical and experimental methods is certainly encouraged, given the particular significance of developing integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Suya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Aimin Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2#, Changchun 130061, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China
| | - Da-Jun Xiang
- Xishan People’s Hospital of Wuxi City, Wuxi 214105, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|