1
|
Chen Y, Tang Z, Koffi PAY, Tang W, Fan B, He YC. Promoted lignocellulose fractionation and improved enzymatic hydrolysis of corn stalks through cationic surfactant combined with deep eutectic solvent pretreatment. Int J Biol Macromol 2024; 282:137150. [PMID: 39488320 DOI: 10.1016/j.ijbiomac.2024.137150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The efficient conversion of lignocellulose relies on the implementation of an effective pretreatment strategy. Cationic surfactants combined with deep eutectic solvent ([Betaine][LA] was employed as a novel pretreatment strategy for treating corn stalks. Valuable insights were provided on the impact of the surfactant hydrophobic segment length on pretreatment efficacy. The specific pretreatment conditions were optimized by single factor and orthogonal experiment. Octadecyl trimethyl ammonium bromide (OTAB, 1.5 wt%) with the longest hydrophobic part combined with [Betaine][LA] (Betaine-to-LA molar ratio 1:4) achieved the best pretreatment effect (delignification 92.8 %, xylan elimination 91.1 %) when severity factor reached 4.26, meanwhile, 1.7 g/L xylo-oligosaccharides and 4.4 g/L furfural were detected in pretreatment liquid due to the hydrolysis of hemicellulose in corn stalks with acidic deep eutectic solvent [Betaine][LA]. The relative saccharification activity reached 2.7 times of raw material, while the lignin surface area significantly decreased, leading to enhanced cellulose accessibility. Additionally, molecular perspective provided by molecular dynamics showed the elimination of lignin and xylan was facilitated by strong interaction of hydrogen-bond and van der Waals force between lignin and hemicellulose with [Betaine][LA] + OTAB. Overall, the effectiveness and potential of cationic surfactant combined deep eutectic solvent pretreatment strategy for lignocellulose pretreatment was revealed.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Tang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Paul Arnaud Yao Koffi
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Wei Tang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Meng X, Qi L, Xia C, Jin X, Zhou J, Dong A, Li J, Yang R. Preparation of environmentally friendly, high strength, adhesion and stability hydrogel based on lignocellulose framework. Int J Biol Macromol 2024; 263:130158. [PMID: 38368986 DOI: 10.1016/j.ijbiomac.2024.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix. The strength of WDH prepared from lignocellulose framework is approximately 50 times higher than poly deep eutectic solvent hydrogel, and about 4.5 times higher than that prepared from cellulose skeleton. The WDH exhibits stable adhesion to most common materials and demonstrates exceptional dimensional stability. Its conductivity remains unaffected by water, even after prolonged exposure to air, maintaining a value of 0.0245 S/m. The anisotropy inherent in the system results in three distinct linear sensing intervals for WDH, exhibiting a maximum sensitivity of 5.45. This paper verified the advantages of lignocellulose framework in improving the strength and stability of hydrogels, which provided a new strategy for the development of sensor materials.
Collapse
Affiliation(s)
- Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linghui Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
3
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Yagoub AEA, Fan Z, Zhou C. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. BIORESOUR BIOPROCESS 2023; 10:21. [PMID: 38647951 PMCID: PMC10992038 DOI: 10.1186/s40643-023-00640-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/26/2023] [Indexed: 04/25/2024] Open
Abstract
Lignin has enormous potential as a renewable feedstock for depolymerizing to numerous high-value chemicals. However, lignin depolymerization is challenging owing to its recalcitrant, heterogenous, and limited water-soluble nature. From the standpoint of environmental friendliness and sustainability, enzymatic depolymerization of lignin is of great significance. Notably, laccases play an essential role in the enzymatic depolymerization of lignin and are considered the ultimate green catalysts. Deep eutectic solvent (DES), an efficient media in biocatalysis, are increasingly recognized as the newest and utmost green solvent that highly dissolves lignin. This review centers on a lignin depolymerization strategy by harnessing the good lignin fractionating capability of DES and the high substrate and product selectivity of laccase. Recent progress and insights into the laccase-DES interactions, protein engineering strategies for improving DES compatibility with laccase, and controlling the product selectivity of lignin degradation by laccase or in DES systems are extensively provided. Lastly, the challenges and prospects of the alliance between DES and laccase for lignin depolymerization are discussed. The collaboration of laccase and DES provides a great opportunity to develop an enzymatic route for lignin depolymerization.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, 520001, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | - Zhiliang Fan
- Biological and Agricultural Engineering Department, University of California, Davis, 95616, USA
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
4
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Zhou C. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit Rev Food Sci Nutr 2023; 64:7201-7219. [PMID: 36815260 DOI: 10.1080/10408398.2023.2181762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lignin, an amorphous biomacromolecule abundantly distributed in the plant kingdom, has gained considerable attention due to its intrinsic bioactivities and renewable nature. Owing to its polyphenolic structure, lignin has a variety of human health activities, including antioxidant, antimicrobial, antidiabetic, antitumor, and other activities. The extraction of lignin from various sources in a green and sustainable manner is critical in the food industry. Deep eutectic solvent (DES) has recently been recognized as a class of safe and environmentally friendly media capable of efficiently extracting lignin. This article comprehensively reviews the recent advances in lignin extraction using DES, discusses the influential factors on the antioxidant activity of lignin, interprets the relationship between antioxidant activity and lignin structure, and overviews the applications of lignin in the food industry. We aim to highlight the advantages of DES in lignin extraction and valorization from the nutrition and food views.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
5
|
Ullah A, Zhang Y, Liu C, Qiao Q, Shao Q, Shi J. Process intensification strategies for green solvent mediated biomass pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128394. [PMID: 36442603 DOI: 10.1016/j.biortech.2022.128394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Demonstrated to be highly effective for lignocellulosic biomass pretreatment, deep eutectic solvent (DES) has attracted increasing attention owing to its advantages of simple synthesis, relatively low chemical cost, and better biocompatibility as compared to certain ionic liquids. Here we provide a critical review of the status of the design/selection of DES for the pretreatment of biomass feedstocks with an emphasis on the process intensification strategies: 1) integration of microwave, ultrasound, and high solid extrusion for pretreating biomass, 2) one-pot DES pretreatment, enzymatic hydrolysis, and fermentation, 3) strategies for DES recycling and product recovery; and 4) recent progress on molecular simulations toward understanding the interactions between DES and biomass compounds such as lignin and cellulose. Lastly, we provide perspectives toward cost-effective, continuous, high-solid, environmental-benign, and industrial-relevant applications and point to future research directions to address the challenges associated with DES pretreatment.
Collapse
Affiliation(s)
- Ahamed Ullah
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Yuxuan Zhang
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Can Liu
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|