1
|
Ziemann E, Coves T, Oren YS, Maman N, Sharon-Gojman R, Neklyudov V, Freger V, Ramon GZ, Bernstein R. Pseudo-bottle-brush decorated thin-film composite desalination membranes with ultrahigh mineral scale resistance. SCIENCE ADVANCES 2024; 10:eadm7668. [PMID: 38781328 PMCID: PMC11114193 DOI: 10.1126/sciadv.adm7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
High water recovery is crucial to inland desalination but is impeded by mineral scaling of the membrane. This work presents a two-step modification approach for grafting high-density zwitterionic pseudo-bottle-brushes to polyamide reverse osmosis membranes to prevent scaling during high-recovery desalination of brackish water. Increasing brush density, induced by increasing reaction time, correlated with reduced scaling. High-density grafting eliminated gypsum scaling and almost completely prevented silica scaling during desalination of synthetic brackish water at a recovery ratio of 80%. Moreover, scaling was effectively mitigated during long-term desalination of real brackish water at a recovery ratio of 90% without pretreatment or antiscalants. Molecular dynamics simulations reveal the critical dependence of the membrane's silica antiscaling ability on the degree to which the coating screens the membrane surface from readily forming silica aggregates. This finding highlights the importance of maximizing grafting density for optimal performance and advanced antiscaling properties to allow high-recovery desalination of complex salt solutions.
Collapse
Affiliation(s)
- Eric Ziemann
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Tali Coves
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Yaeli S. Oren
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Guy Z. Ramon
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Department of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
2
|
Astier S, Johnson EC, Norvilaite O, Varlas S, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320303 PMCID: PMC10883040 DOI: 10.1021/acs.langmuir.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.
Collapse
Affiliation(s)
- Samuel Astier
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Oleta Norvilaite
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Spyridon Varlas
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
3
|
Johnson EC, Varlas S, Norvilaite O, Neal TJ, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Adsorption of Aldehyde-Functional Diblock Copolymer Spheres onto Surface-Grafted Polymer Brushes via Dynamic Covalent Chemistry Enables Friction Modification. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6109-6122. [PMID: 37576584 PMCID: PMC10413866 DOI: 10.1021/acs.chemmater.3c01227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Dynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of cis-diol-functional sterically-stabilized spheres of 30-250 nm diameter were prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. The pendent cis-diol groups within the steric stabilizer chains of these precursor nanoparticles were then oxidized using sodium periodate to produce the corresponding aldehyde-functional spheres. Similarly, hydrophilic cis-diol-functionalized methacrylic brushes grafted from a planar silicon surface using activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) were selectively oxidized to generate the corresponding aldehyde-functional brushes. Ellipsometry and X-ray photoelectron spectroscopy were used to confirm brush oxidation, while scanning electron microscopy studies demonstrated that the nanoparticles did not adsorb onto a cis-diol-functional precursor brush. Subsequently, the aldehyde-functional brushes were treated with excess small-molecule diamine, and the resulting imine linkages were converted into secondary amine bonds via reductive amination. The resulting primary amine-functionalized brushes formed multiple dynamic imine bonds with the aldehyde-functional diblock copolymer spheres, leading to a mean surface coverage of approximately 0.33 on the upper brush layer surface, regardless of the nanoparticle size. Friction force microscopy studies of the resulting nanoparticle-decorated brushes enabled calculation of friction coefficients, which were compared to that measured for the bare aldehyde-functional brush. Friction coefficients were reasonably consistent across all surfaces except when particle size was comparable to the size of the probe tip. In this case, differences were ascribed to an increase in contact area between the tip and the brush-nanoparticle layer. This new model system enhances our understanding of nanoparticle adsorption onto hydrophilic brush layers.
Collapse
Affiliation(s)
- Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Spyridon Varlas
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Oleta Norvilaite
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Thomas J. Neal
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Emma E. Brotherton
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
4
|
Laktionov MY, Zhulina EB, Klushin L, Richter RP, Borisov OV. Selective Colloid Transport across Planar Polymer Brushes. Macromol Rapid Commun 2023; 44:e2200980. [PMID: 36915225 DOI: 10.1002/marc.202200980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Indexed: 03/16/2023]
Abstract
Polymer brushes are attractive as surface coatings for a wide range of applications, from fundamental research to everyday life, and also play important roles in biological systems. How colloids (e.g., functional nanoparticles, proteins, viruses) bind and move across polymer brushes is an important yet under-studied problem. A mean-field theoretical approach is presented to analyze the binding and transport of colloids in planar polymer brushes. The theory explicitly considers the effect of solvent strength on brush conformation and of colloid-polymer affinity on colloid binding and transport. The position-dependent free energy of the colloid insertion into the polymer brush which controls the rate of colloid transport across the brush is derived. It is shown how the properties of the brush can be adjusted for brushes to be highly selective, effectively serving as tuneable gates with respect to colloid size and affinity to the brush-forming polymer. The most important parameter regime simultaneously allowing for high brush permeability and selectivity corresponds to a condition when the repulsive and attractive contributions to the colloid insertion free energy nearly cancel. This theory should be useful to design sensing and purification devices with enhanced selectivity and to better understand mechanisms underpinning the functions of biological polymer brushes.
Collapse
Affiliation(s)
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy Prospect, Saint Petersburg, 199004, Russia
| | - Leonid Klushin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy Prospect, Saint Petersburg, 199004, Russia
- Department of Physics, American University of Beirut, P.O. Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Oleg V Borisov
- ITMO University, 49 Kronverksky Prospekt, Saint Petersburg, 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy Prospect, Saint Petersburg, 199004, Russia
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, University of Pau et des Pays de l'Adour UMR 5254, Pau, 64053, France
| |
Collapse
|
5
|
Salamatova TO, Zhulina EB, Borisov OV. Bovine Serum Albumin Interaction with Polyanionic and Polycationic Brushes: The Case Theoretical Study. Int J Mol Sci 2023; 24:ijms24043395. [PMID: 36834807 PMCID: PMC9961975 DOI: 10.3390/ijms24043395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
We apply a coarse-grained self-consistent field Poisson-Boltzmann framework to study interaction between Bovine Serum Albumin (BSA) and a planar polyelectropyte brush. Both cases of negatively (polyanionic) and positively (polycationic) charged brushes are considered. Our theoretical model accounts for (1) re-ionization free energy of the amino acid residues upon protein insertion into the brush; (2) osmotic force repelling the protein globule from the brush; (3) hydrophobic interactions between non-polar areas on the globule surface and the brush-forming chains. We demonstrate that calculated position-dependent insertion free energy exhibits different patterns, corresponding to either thermodynamically favourable BSA absorption in the brush or thermodynamically or kinetically hindered absorption (expulsion) depending on the pH and ionic strength of the solution. The theory predicts that due to the re-ionization of BSA within the brush, a polyanionic brush can efficiently absorb BSA over a wider pH range on the "wrong side" of the isoelectric point (IEP) compared to a polycationic brush. The results of our theoretical analysis correlate with available experimental data and thus validate the developed model for prediction of the interaction patterns for various globular proteins with polyelectrolyte brushes.
Collapse
Affiliation(s)
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Chemical Engineering Center, ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, 64053 Pau, France
- Correspondence:
| |
Collapse
|