1
|
Azizova LR, Kulik TV, Palianytsia BB, Ilchenko MM, Telbiz GM, Balu AM, Tarnavskiy S, Luque R, Roldan A, Kartel MT. The Role of Surface Complexes in Ketene Formation from Fatty Acids via Pyrolysis over Silica: from Platform Molecules to Waste Biomass. J Am Chem Soc 2023; 145:26592-26610. [PMID: 38047620 PMCID: PMC10722514 DOI: 10.1021/jacs.3c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Fatty acids (FA) are the main constituents of lipids and oil crop waste, considered to be a promising 2G biomass that can be converted into ketenes via catalytic pyrolysis. Ketenes are appraised as promising synthons for the pharmaceutical, polymer, and chemical industries. Progress in the thermal conversion of short- and long-chain fatty acids into ketenes requires a deep understanding of their interaction mechanisms with the nanoscale oxide catalysts. In this work, the interactions of fatty acids with silica are investigated using a wide range of experimental and computational techniques (TPD MS, DFT, FTIR, in situ IR, equilibrium adsorption, and thermogravimetry). The adsorption isotherms of linear and branched fatty acids C1-C6 on the silica surface from aqueous solution have been obtained. The relative quantities of different types of surface complexes, as well as kinetic parameters of their decomposition, were calculated. The formation of surface complexes with a coordination bond between the carbonyl oxygens and silicon atoms in the surface-active center, which becomes pentacoordinate, was confirmed by DFT calculations, in good agreement with the IR feature at ∼1680 cm 1. Interestingly, ketenes release relate to these complexes' decomposition as confirmed by the thermal evolution of the absorption band (1680 cm-1) synchronously with the TPD peak of the ketene molecular ion. The established regularities of the ketenezation are also observed for the silica-induced pyrolysis of glyceryl trimyristate and real waste, rapeseed meals.
Collapse
Affiliation(s)
- Liana R. Azizova
- School
of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, U.K.
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| | - Tetiana V. Kulik
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Borys B. Palianytsia
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Mykola M. Ilchenko
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - German M. Telbiz
- National
Academy of Science of Ukraine, L. V. Pisarzhevsky
Institute of Physical Chemistry, Nauky Av. 31, Kyiv 03039, Ukraine
| | - Alina M. Balu
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Sergiy Tarnavskiy
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Rafael Luque
- Universitá
degli studi Mediterranea di Reggio Calabria (UNIRC), DICEAM, Via Zehender
(giá via Graziella), Loc. Feo di Vito, I89122 Reggio Calabria, Italy
- Universidad
ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Alberto Roldan
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Mykola T. Kartel
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| |
Collapse
|
2
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
3
|
Abstract
Combustion is a reactive oxidation process that releases energy bound in chemical compounds used as fuels─energy that is needed for power generation, transportation, heating, and industrial purposes. Because of greenhouse gas and local pollutant emissions associated with fossil fuels, combustion science and applications are challenged to abandon conventional pathways and to adapt toward the demand of future carbon neutrality. For the design of efficient, low-emission processes, understanding the details of the relevant chemical transformations is essential. Comprehensive knowledge gained from decades of fossil-fuel combustion research includes general principles for establishing and validating reaction mechanisms and process models, relying on both theory and experiments with a suite of analytic monitoring and sensing techniques. Such knowledge can be advantageously applied and extended to configure, analyze, and control new systems using different, nonfossil, potentially zero-carbon fuels. Understanding the impact of combustion and its links with chemistry needs some background. The introduction therefore combines information on exemplary cultural and technological achievements using combustion and on nature and effects of combustion emissions. Subsequently, the methodology of combustion chemistry research is described. A major part is devoted to fuels, followed by a discussion of selected combustion applications, illustrating the chemical information needed for the future.
Collapse
|
4
|
Hemberger P, Wu X, Pan Z, Bodi A. Continuous Pyrolysis Microreactors: Hot Sources with Little Cooling? New Insights Utilizing Cation Velocity Map Imaging and Threshold Photoelectron Spectroscopy. J Phys Chem A 2022; 126:2196-2210. [PMID: 35316066 DOI: 10.1021/acs.jpca.2c00766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistively heated silicon carbide microreactors are widely applied as continuous sources to selectively prepare elusive and reactive intermediates with astrochemical, catalytic, or combustion relevance to measure their photoelectron spectrum. These reactors also provide deep mechanistic insights into uni- and bimolecular chemistry. However, the sampling conditions and effects have not been fully characterized. We use cation velocity map imaging to measure the velocity distribution of the molecular beam signal and to quantify the scattered, rethermalized background sample. Although translational cooling is efficient in the adiabatic expansion from the reactor, the breakdown diagrams of methane and chlorobenzene confirm that the molecular beam component exhibits a rovibrational temperature comparable with that of the reactor. Thus, rovibrational cooling is practically absent in the expansion from the microreactor. The high rovibrational temperature also affects the threshold photoelectron spectrum of both benzene and the allyl radical in the molecular beam, but to different degrees. While the extreme broadening of the benzene TPES suggests a complex ionization mechanism, the allyl TPES is in fact consistent with an internal temperature close to that of the reactor. The background, room-temperature spectra of both are superbly reproduced by Franck-Condon simulations at 300 K. On the one hand, this leads us to suggest that room-temperature reference spectra should be used in species identification. On the other hand, analysis of the allyl iodide pyrolysis data shows that iodine atoms often recombine to form molecular iodine on the chamber surfaces. Such sampling effects may distort the chemical composition of the scattered background with respect to the molecular beam signal emanating directly from the reactor. This must be considered in quantitative analyses and kinetic modeling.
Collapse
Affiliation(s)
- Patrick Hemberger
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Zeyou Pan
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Andras Bodi
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|