1
|
Long Y, Donald BR. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567384. [PMID: 38014181 PMCID: PMC10680814 DOI: 10.1101/2023.11.16.567384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Accurate binding affinity prediction is crucial to structure-based drug design. Recent work used computational topology to obtain an effective representation of protein-ligand interactions. While algorithms using algebraic topology have proven useful in predicting properties of biomolecules, previous algorithms employed uninterpretable machine learning models which failed to explain the underlying geometric and topological features that drive accurate binding affinity prediction. Moreover, they had high computational complexity which made them intractable for large proteins. We present the fastest known algorithm to compute persistent homology features for protein-ligand complexes using opposition distance, with a runtime that is independent of the protein size. Then, we exploit these features in a novel, interpretable algorithm to predict protein-ligand binding affinity. Our algorithm achieves interpretability through an effective embedding of distances across bipartite matchings of the protein and ligand atoms into real-valued functions by summing Gaussians centered at features constructed by persistent homology. We name these functions internuclear persistent contours (IPCs) . Next, we introduce persistence fingerprints , a vector with 10 components that sketches the distances of different bipartite matching between protein and ligand atoms, refined from IPCs. Let the number of protein atoms in the protein-ligand complex be n , number of ligand atoms be m , and ω ≈ 2.4 be the matrix multiplication exponent. We show that for any 0 < ε < 1, after an 𝒪 ( mn log( mn )) preprocessing procedure, we can compute an ε -accurate approximation to the persistence fingerprint in 𝒪 ( m log 6 ω ( m/ε )) time, independent of protein size. This is an improvement in time complexity by a factor of 𝒪 (( m + n ) 3 ) over any previous binding affinity prediction that uses persistent homology. We show that the representational power of persistence fingerprint generalizes to protein-ligand binding datasets beyond the training dataset. Then, we introduce PATH , Predicting Affinity Through Homology, a two-part algorithm consisting of PATH + and PATH - . PATH + is an interpretable, small ensemble of shallow regression trees for binding affinity prediction from persistence fingerprints. We show that despite using 1,400-fold fewer features, PATH + has comparable performance to a previous state-of-the-art binding affinity prediction algorithm that uses persistent homology. Moreover, PATH + has the advantage of being interpretable. We visualize the features captured by persistence fingerprint for variant HIV-1 protease complexes and show that persistence fingerprint captures binding-relevant structural mutations. PATH - , in turn, uses regression trees over IPCs to differentiate between binding and decoy complexes. Finally, we benchmarked PATH versus established binding affinity prediction algorithms spanning physics-based, knowledge-based, and deep learning methods, revealing that PATH has comparable or better performance with less overfitting, compared to these state-of-the-art methods. The source code for PATH is released open-source as part of the osprey protein design software package.
Collapse
|
2
|
Mohamed Abdul Cader J, Newton MAH, Rahman J, Mohamed Abdul Cader AJ, Sattar A. Ensembling methods for protein-ligand binding affinity prediction. Sci Rep 2024; 14:24447. [PMID: 39424851 PMCID: PMC11489440 DOI: 10.1038/s41598-024-72784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Protein-ligand binding affinity prediction is a key element of computer-aided drug discovery. Most of the existing deep learning methods for protein-ligand binding affinity prediction utilize single models and suffer from low accuracy and generalization capability. In this paper, we train 13 deep learning models from combinations of 5 input features. Then, we explore all possible ensembles of the trained models to find the best ensembles. Our deep learning models use cross-attention and self-attention layers to extract short and long-range interactions. Our method is named Ensemble Binding Affinity (EBA). EBA extracts information from various models using different combinations of input features, such as simple 1D sequential and structural features of the protein-ligand complexes rather than 3D complex features. EBA is implemented to accurately predict the binding affinity of a protein-ligand complex. One of our ensembles achieves the highest Pearson correlation coefficient (R) value of 0.914 and the lowest root mean square error (RMSE) value of 0.957 on the well-known benchmark test set CASF2016. Our ensembles show significant improvements of more than 15% in R-value and 19% in RMSE on both well-known benchmark CSAR-HiQ test sets over the second-best predictor named CAPLA. Furthermore, the superior performance of the ensembles across all metrics compared to existing state-of-the-art protein-ligand binding affinity prediction methods on all five benchmark test datasets demonstrates the effectiveness and robustness of our approach. Therefore, our approach to improving binding affinity prediction between proteins and ligands can contribute to improving the success rate of potential drugs and accelerate the drug development process.
Collapse
Affiliation(s)
- Jiffriya Mohamed Abdul Cader
- School of Information and Communication Technology, Griffith University, Nathan Campus, Australia.
- Department of IT, Sri Lanka Institute of Advanced Technological Education, Colombo, Sri Lanka.
| | - M A Hakim Newton
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan Campus, Australia
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, Australia
| | - Julia Rahman
- School of Information and Communication Technology, Griffith University, Nathan Campus, Australia
- Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | | | - Abdul Sattar
- School of Information and Communication Technology, Griffith University, Nathan Campus, Australia
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan Campus, Australia
| |
Collapse
|
3
|
Zeng C, Zhuo C, Gao J, Liu H, Zhao Y. Advances and Challenges in Scoring Functions for RNA-Protein Complex Structure Prediction. Biomolecules 2024; 14:1245. [PMID: 39456178 PMCID: PMC11506084 DOI: 10.3390/biom14101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-protein complexes play a crucial role in cellular functions, providing insights into cellular mechanisms and potential therapeutic targets. However, experimental determination of these complex structures is often time-consuming and resource-intensive, and it rarely yields high-resolution data. Many computational approaches have been developed to predict RNA-protein complex structures in recent years. Despite these advances, achieving accurate and high-resolution predictions remains a formidable challenge, primarily due to the limitations inherent in current RNA-protein scoring functions. These scoring functions are critical tools for evaluating and interpreting RNA-protein interactions. This review comprehensively explores the latest advancements in scoring functions for RNA-protein docking, delving into the fundamental principles underlying various approaches, including coarse-grained knowledge-based, all-atom knowledge-based, and machine-learning-based methods. We critically evaluate the strengths and limitations of existing scoring functions, providing a detailed performance assessment. Considering the significant progress demonstrated by machine learning techniques, we discuss emerging trends and propose future research directions to enhance the accuracy and efficiency of scoring functions in RNA-protein complex prediction. We aim to inspire the development of more sophisticated and reliable computational tools in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | | | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China; (C.Z.); (C.Z.); (J.G.); (H.L.)
| |
Collapse
|
4
|
Chen X, Huang J, Shen T, Zhang H, Xu L, Yang M, Xie X, Yan Y, Yan J. DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention. Bioinformatics 2024; 40:btae319. [PMID: 38897656 PMCID: PMC11193059 DOI: 10.1093/bioinformatics/btae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
MOTIVATION Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges. RESULTS We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family. AVAILABILITY AND IMPLEMENTATION The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.
Collapse
Affiliation(s)
- Xiying Chen
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinsha Huang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianqiao Shen
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Houjin Zhang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Rahman J, Newton MAH, Ali ME, Sattar A. Distance plus attention for binding affinity prediction. J Cheminform 2024; 16:52. [PMID: 38735985 PMCID: PMC11089753 DOI: 10.1186/s13321-024-00844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Protein-ligand binding affinity plays a pivotal role in drug development, particularly in identifying potential ligands for target disease-related proteins. Accurate affinity predictions can significantly reduce both the time and cost involved in drug development. However, highly precise affinity prediction remains a research challenge. A key to improve affinity prediction is to capture interactions between proteins and ligands effectively. Existing deep-learning-based computational approaches use 3D grids, 4D tensors, molecular graphs, or proximity-based adjacency matrices, which are either resource-intensive or do not directly represent potential interactions. In this paper, we propose atomic-level distance features and attention mechanisms to capture better specific protein-ligand interactions based on donor-acceptor relations, hydrophobicity, and π -stacking atoms. We argue that distances encompass both short-range direct and long-range indirect interaction effects while attention mechanisms capture levels of interaction effects. On the very well-known CASF-2016 dataset, our proposed method, named Distance plus Attention for Affinity Prediction (DAAP), significantly outperforms existing methods by achieving Correlation Coefficient (R) 0.909, Root Mean Squared Error (RMSE) 0.987, Mean Absolute Error (MAE) 0.745, Standard Deviation (SD) 0.988, and Concordance Index (CI) 0.876. The proposed method also shows substantial improvement, around 2% to 37%, on five other benchmark datasets. The program and data are publicly available on the website https://gitlab.com/mahnewton/daap. Scientific Contribution StatementThis study innovatively introduces distance-based features to predict protein-ligand binding affinity, capitalizing on unique molecular interactions. Furthermore, the incorporation of protein sequence features of specific residues enhances the model's proficiency in capturing intricate binding patterns. The predictive capabilities are further strengthened through the use of a deep learning architecture with attention mechanisms, and an ensemble approach, averaging the outputs of five models, is implemented to ensure robust and reliable predictions.
Collapse
Affiliation(s)
- Julia Rahman
- School of Information and Communication Technology, Griffith University, 170 Kessels Rd, Nathan, 4111, QLD, Australia.
| | - M A Hakim Newton
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, 170 Kessels Rd, Nathan, 4111, QLD, Australia
- School of Information and Physical Sciences, University of Newcastle, University Dr, Callaghan, 2308, NSW, Australia
| | - Mohammed Eunus Ali
- Department of Computer Science & Engineering, Bangladesh University of Engineering and Technology, Palashi, 1205, Dhaka, Bangladesh
| | - Abdul Sattar
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, 170 Kessels Rd, Nathan, 4111, QLD, Australia
| |
Collapse
|
7
|
Hong Q, Zhou G, Qin Y, Shen J, Li H. SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction. Phys Chem Chem Phys 2024; 26:12880-12891. [PMID: 38625412 DOI: 10.1039/d3cp05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Protein-ligand binding affinity prediction plays an important role in the field of drug discovery. Existing deep learning-based approaches have significantly improved the efficiency of protein-ligand binding affinity prediction through their excellent inductive bias capability. However, these methods only focus on fragmented three-dimensional data, which truncates the integrity of pocket data, leading to the neglect of potential long-range interactions. In this paper, we propose a dual-stream framework, with amino acid sequence assisting the atomic data fusion for graph neural network (termed SadNet), to fuse both 3D atomic data and sequence data for more accurate prediction results. In detail, SadNet consists of a pocket module and a sequence module. The sequence module expands the "receptive field" of the pocket module through a mid-term virtual node fusion. To better integrate sequence-level information from the sequence module and 3D structural information from the pocket module, we incorporate structural information for each amino acid within the sequence module. Besides, to better understand the intrinsic relationship between sequences and 3D atomic information, our SadNet utilizes information stacking from both the early stage and later stage. Experimental results on publicly available benchmark datasets demonstrate the superiority of the proposed dual-stream approach over the state-of-the-art alternatives. The code of this work is available online at https://github.com/wardhong/SadNet.
Collapse
Affiliation(s)
- Qiansen Hong
- Nanjing University of Posts and Telecommunications, NanJing, China.
| | - Guoqiang Zhou
- Nanjing University of Posts and Telecommunications, NanJing, China.
| | - Yuke Qin
- Nanjing University of Posts and Telecommunications, NanJing, China.
| | - Jun Shen
- University of Wollongong, Australia
| | | |
Collapse
|
8
|
Zhong KY, Wen ML, Meng FF, Li X, Jiang B, Zeng X, Li Y. MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy. J Chem Inf Model 2024; 64:2878-2888. [PMID: 37610162 DOI: 10.1021/acs.jcim.3c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The prediction of the drug-target affinity (DTA) plays an important role in evaluating molecular druggability. Although deep learning-based models for DTA prediction have been extensively attempted, there are rare reports on multimodal models that leverage various fusion strategies to exploit heterogeneous information from multiple different modalities of drugs and targets. In this study, we proposed a multimodal deep model named MMDTA, which integrated the heterogeneous information from various modalities of drugs and targets using a hybrid fusion strategy to enhance DTA prediction. To achieve this, MMDTA first employed convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to extract diverse heterogeneous information from the sequences and structures of drugs and targets. It then utilized a hybrid fusion strategy to combine and complement the extracted heterogeneous information, resulting in the fused modal information for predicting drug-target affinity through the fully connected (FC) layers. Experimental results demonstrated that MMDTA outperformed the competitive state-of-the-art deep learning models on the widely used benchmark data sets, particularly with a significantly improved key evaluation metric, Root Mean Square Error (RMSE). Furthermore, MMDTA exhibited excellent generalization and practical application performance on multiple different data sets. These findings highlighted MMDTA's accuracy and reliability in predicting the drug-target binding affinity. For researchers interested in the source data and code, they are accessible at http://github.com/dldxzx/MMDTA.
Collapse
Affiliation(s)
- Kai-Yang Zhong
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming 650000, China
| | - Fan-Fang Meng
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xin Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Xin Zeng
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| |
Collapse
|
9
|
Zhang X, Gao H, Wang H, Chen Z, Zhang Z, Chen X, Li Y, Qi Y, Wang R. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction. J Chem Inf Model 2024; 64:2205-2220. [PMID: 37319418 DOI: 10.1021/acs.jcim.3c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Predicting protein-ligand binding affinity is a central issue in drug design. Various deep learning models have been published in recent years, where many of them rely on 3D protein-ligand complex structures as input and tend to focus on the single task of reproducing binding affinity. In this study, we have developed a graph neural network model called PLANET (Protein-Ligand Affinity prediction NETwork). This model takes the graph-represented 3D structure of the binding pocket on the target protein and the 2D chemical structure of the ligand molecule as input. It was trained through a multi-objective process with three related tasks, including deriving the protein-ligand binding affinity, protein-ligand contact map, and ligand distance matrix. Besides the protein-ligand complexes with known binding affinity data retrieved from the PDBbind database, a large number of non-binder decoys were also added to the training data for deriving the final model of PLANET. When tested on the CASF-2016 benchmark, PLANET exhibited a scoring power comparable to the best result yielded by other deep learning models as well as a reasonable ranking power and docking power. In virtual screening trials conducted on the DUD-E benchmark, PLANET's performance was notably better than several deep learning and machine learning models. As on the LIT-PCBA benchmark, PLANET achieved comparable accuracy as the conventional docking program Glide, but it only spent less than 1% of Glide's computation time to finish the same job because PLANET did not need exhaustive conformational sampling. Considering the decent accuracy and efficiency of PLANET in binding affinity prediction, it may become a useful tool for conducting large-scale virtual screening.
Collapse
Affiliation(s)
- Xiangying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Haotian Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Zhihang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Zhe Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xinchong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yifei Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
10
|
Wang H. Prediction of protein-ligand binding affinity via deep learning models. Brief Bioinform 2024; 25:bbae081. [PMID: 38446737 PMCID: PMC10939342 DOI: 10.1093/bib/bbae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Accurately predicting the binding affinity between proteins and ligands is crucial in drug screening and optimization, but it is still a challenge in computer-aided drug design. The recent success of AlphaFold2 in predicting protein structures has brought new hope for deep learning (DL) models to accurately predict protein-ligand binding affinity. However, the current DL models still face limitations due to the low-quality database, inaccurate input representation and inappropriate model architecture. In this work, we review the computational methods, specifically DL-based models, used to predict protein-ligand binding affinity. We start with a brief introduction to protein-ligand binding affinity and the traditional computational methods used to calculate them. We then introduce the basic principles of DL models for predicting protein-ligand binding affinity. Next, we review the commonly used databases, input representations and DL models in this field. Finally, we discuss the potential challenges and future work in accurately predicting protein-ligand binding affinity via DL models.
Collapse
Affiliation(s)
- Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
11
|
Li G, Yuan Y, Zhang R. Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction. Comput Biol Chem 2023; 107:107972. [PMID: 37883905 DOI: 10.1016/j.compbiolchem.2023.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Accurately predicting protein-ligand binding affinities is crucial for determining molecular properties and understanding their physical effects. Neural networks and transformers are the predominant methods for sequence modeling, and both have been successfully applied independently for protein-ligand binding affinity prediction. As local and global information of molecules are vital for protein-ligand binding affinity prediction, we aim to combine bi-directional gated recurrent unit (BiGRU) and convolutional neural network (CNN) to effectively capture both local and global molecular information. Additionally, attention mechanisms can be incorporated to automatically learn and adjust the level of attention given to local and global information, thereby enhancing the performance of the model. To achieve this, we propose the PLAsformer approach, which encodes local and global information of molecules using 3DCNN and BiGRU with attention mechanism, respectively. This approach enhances the model's ability to encode comprehensive local and global molecular information. PLAsformer achieved a Pearson's correlation coefficient of 0.812 and a Root Mean Square Error (RMSE) of 1.284 when comparing experimental and predicted affinity on the PDBBind-2016 dataset. These results surpass the current state-of-the-art methods for binding affinity prediction. The high accuracy of PLAsformer's predictive performance, along with its excellent generalization ability, is clearly demonstrated by these findings.
Collapse
Affiliation(s)
- Gaili Li
- School of Information science and Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yongna Yuan
- School of Information science and Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ruisheng Zhang
- School of Information science and Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Zhao X, Li H, Zhang K, Huang SY. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information. J Phys Chem B 2023; 127:9021-9034. [PMID: 37822259 DOI: 10.1021/acs.jpcb.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Scoring functions for protein-ligand interactions play a critical role in structure-based drug design. Owing to the good balance between general applicability and computational efficiency, knowledge-based scoring functions have obtained significant advancements and achieved many successes. Nevertheless, knowledge-based scoring functions face a challenge in utilizing the experimental affinity data and thus may not perform well in binding affinity prediction. Addressing the challenge, we have proposed an improved version of the iterative knowledge-based scoring function ITScore by considering binding affinity information, which is referred to as ITScoreAff, based on a large training set of 6216 protein-ligand complexes with both structures and affinity data. ITScoreAff was extensively evaluated and compared with ITScore, 33 traditional, and 6 machine learning scoring functions in terms of docking power, ranking power, and screening power on the independent CASF-2016 benchmark. It was shown that ITScoreAff obtained an overall better performance than the other 40 scoring functions and gave an average success rate of 85.3% in docking power, a correlation coefficient of 0.723 in scoring power, and an average rank correlation coefficient of 0.668 in ranking power. In addition, ITScoreAff also achieved the overall best screening power when the top 10% of the ranked database were considered. These results demonstrated the robustness of ITScoreAff and its improvement over existing scoring functions.
Collapse
Affiliation(s)
- Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
13
|
Dong L, Shi S, Qu X, Luo D, Wang B. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph. Phys Chem Chem Phys 2023; 25:24110-24120. [PMID: 37655493 DOI: 10.1039/d3cp03651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Accurate prediction of protein-ligand binding affinity is pivotal for drug design and discovery. Here, we proposed a novel deep fusion graph neural networks framework named FGNN to learn the protein-ligand interactions from the 3D structures of protein-ligand complexes. Unlike 1D sequences for proteins or 2D graphs for ligands, the 3D graph of protein-ligand complex enables the more accurate representations of the protein-ligand interactions. Benchmark studies have shown that our fusion models FGNN can achieve more accurate prediction of binding affinity than any individual algorithm. The advantages of fusion strategies have been demonstrated in terms of expressive power of data, learning efficiency and model interpretability. Our fusion models show satisfactory performances on diverse data sets, demonstrating their generalization ability. Given the good performances in both binding affinity prediction and virtual screening, our fusion models are expected to be practically applied for drug screening and design. Our work highlights the potential of the fusion graph neural network algorithm in solving complex prediction problems in computational biology and chemistry. The fusion graph neural networks (FGNN) model is freely available in https://github.com/LinaDongXMU/FGNN.
Collapse
Affiliation(s)
- Lina Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shuai Shi
- Department of Algorithm, TuringQ Co., Ltd., Shanghai, 200240, China
| | - Xiaoyang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Ding Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
14
|
Jin Z, Wu T, Chen T, Pan D, Wang X, Xie J, Quan L, Lyu Q. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism. Bioinformatics 2023; 39:btad049. [PMID: 36688724 PMCID: PMC9900214 DOI: 10.1093/bioinformatics/btad049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
MOTIVATION Accurate and rapid prediction of protein-ligand binding affinity is a great challenge currently encountered in drug discovery. Recent advances have manifested a promising alternative in applying deep learning-based computational approaches for accurately quantifying binding affinity. The structure complementarity between protein-binding pocket and ligand has a great effect on the binding strength between a protein and a ligand, but most of existing deep learning approaches usually extracted the features of pocket and ligand by these two detached modules. RESULTS In this work, a new deep learning approach based on the cross-attention mechanism named CAPLA was developed for improved prediction of protein-ligand binding affinity by learning features from sequence-level information of both protein and ligand. Specifically, CAPLA employs the cross-attention mechanism to capture the mutual effect of protein-binding pocket and ligand. We evaluated the performance of our proposed CAPLA on comprehensive benchmarking experiments on binding affinity prediction, demonstrating the superior performance of CAPLA over state-of-the-art baseline approaches. Moreover, we provided the interpretability for CAPLA to uncover critical functional residues that contribute most to the binding affinity through the analysis of the attention scores generated by the cross-attention mechanism. Consequently, these results indicate that CAPLA is an effective approach for binding affinity prediction and may contribute to useful help for further consequent applications. AVAILABILITY AND IMPLEMENTATION The source code of the method along with trained models is freely available at https://github.com/lennylv/CAPLA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhi Jin
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Tingfang Wu
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Province Key Lab for Information Processing Technologies, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| | - Taoning Chen
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Deng Pan
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Xuejiao Wang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Jingxin Xie
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Lijun Quan
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Province Key Lab for Information Processing Technologies, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| | - Qiang Lyu
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Province Key Lab for Information Processing Technologies, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| |
Collapse
|
15
|
Ning S, Wang H, Zeng C, Zhao Y. Prediction of allosteric druggable pockets of cyclin-dependent kinases. Brief Bioinform 2022; 23:6643454. [PMID: 35830869 DOI: 10.1093/bib/bbac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase (Cdk) proteins play crucial roles in the cell cycle progression and are thus attractive drug targets for therapy against such aberrant cell cycle processes as cancer. Since most of the available Cdk inhibitors target the highly conserved catalytic ATP pocket and their lack of specificity often lead to side effects, it is imperative to identify and characterize less conserved non-catalytic pockets capable of interfering with the kinase activity allosterically. However, a systematic analysis of these allosteric druggable pockets is still in its infancy. Here, we summarize the existing Cdk pockets and their selectivity. Then, we outline a network-based pocket prediction approach (NetPocket) and illustrate its utility for systematically identifying the allosteric druggable pockets with case studies. Finally, we discuss potential future directions and their challenges.
Collapse
Affiliation(s)
- Shangbo Ning
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|