1
|
Wang P, Zheng W, Qu Y, Duan N, Yang Y, Wang D, Wang H, Chen Q. Photo-Excited High-Spin State Ni (III) Species in Mo-Doped Ni 3S 2 for Efficient Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403107. [PMID: 39030942 DOI: 10.1002/smll.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Designing robust catalysts for increasing the sluggish kinetics of the urea oxidation reaction (UOR) is challenging. Herein, the regulation of spin states for metal active sites by photoexcitation to facilitate the adsorption of urea and intermediates is demonstrated. Mo-doped nickel sulfide nanoribbon arrays (Mo-Ni3S2@NMF) with excellent light-trapping capacity are successfully prepared. Under AM 1.5G illumination, the activity of the Mo-Ni3S2@NMF exhibits a 50% improvement in the UOR current. Compared with those under dark conditions, Mo-Ni3S2@NMF achieve 10 mA cm-2 at 1.315 VRHE for UOR and 1.32 Vcell for urea electrolysis, which are decreases of 15 and 80 mV, respectively. The electron spin resonance, in situ Fourier transform infrared spectroscopy analysis and density functional theory calculations reveal that illumination led to the formation of Ni3+ active sites in a high-spin state, which strengthens the d-p orbital hybridization of Ni-N, hence facilitating the adsorption of urea. C─N cleavage of the *CONN intermediate is further inhibited, which promotes the oxidation of urea molecules via the active N2 pathway, thereby accelerating the UOR rate.
Collapse
Affiliation(s)
- Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yafei Qu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Naiyuan Duan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Wang
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
2
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
3
|
Yang W, Ding Q, Xing X, Wang F, Lin H, Li S. Dual-mode detection for the total antioxidant capability of skincare products based on porous CuS@CdS@Au nanoshells. NANOSCALE 2024; 16:19239-19244. [PMID: 39329427 DOI: 10.1039/d4nr03313b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The antioxidants in skincare products play a crucial role in delaying the aging process of the skin. With the growing variety of cosmetic products, it is essential to develop effective methods for measuring their total antioxidant capability (TAC). This study introduces a novel nanoenyzme, CuS@CdS@Au nanoshells (NSs), characterized by porous morphologies and composite materials, which demonstrate remarkable localized surface plasmon resonance (LSPR) effects, thereby enhancing their photocatalytic and photothermal properties. Under 808 nm laser irradiation, these nano-enzymes exhibited superior catalytic ability for TMB oxidation and temperature increases compared to CuS or CuS @Au NSs. The TMB absorption response and temperature increase showed high sensitivity to antioxidants such as ascorbic acid, glutathione, and ferulic acid, enabling the development of a dual-mode detection strategy for quantifying the TAC in skincare products without the need for complex pretreatments. Furthermore, the temperature response-based detection results proved to be more accurate than those derived from absorption response in recovery experiments. This research not only improves the reliability of antioxidant assessments but also provides a valuable tool for quality control in the skincare industry.
Collapse
Affiliation(s)
- Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Feng Z, Jia Y, Cui H. Engineering the surface roughness of the gold nanoparticles for the modulation of LSPR and SERS. J Colloid Interface Sci 2024; 672:1-11. [PMID: 38823218 DOI: 10.1016/j.jcis.2024.05.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
In this work, we reported that by using a strong thiol ligand as the morphology-directing reagent, a series of Au nanoparticles with plate-like surface sub-structures could be successfully obtained via a one-pot seedless synthesis. The size and the density of the plates on the surface of Au can be readily tuned with the amount of the thiol ligand, resembling different roughness of the surface. Arising from the different surface roughness, the localized surface plasmon resonance (LSPR) of these shape and morphological alike Au nanoparticles can be continuously tuned within the visible-NIR region. The broad LSPR absorptions and feasible tunability make the Au nanoparticles suitable candidate for plasmonic-related applications. Interestingly, huge SERS enhancement was simultaneously achieved based on the specific surface roughness. Our results demonstrate the great potentials for tuning the LSPR and SERS of Au nanostructures through the engineering of the surface morphologies, which would assist for the design, synthesis, and applications of Au-based plasmonic nanomaterials in various fields.
Collapse
Affiliation(s)
- Ziqi Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yun Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
5
|
da Silva KN, Shetty S, Sullivan Allsop S, Cai R, Wang S, Quiroz J, Chundak M, Dos Santos HLS, Abdelsalam I, Oropeza FE, de la Peña O'Shea VA, Heikkinen N, Sitta E, Alves TV, Ritala M, Huo W, Slater TJA, Haigh SJ, Camargo PHC. Au@AuPd Core-Alloyed Shell Nanoparticles for Enhanced Electrocatalytic Activity and Selectivity under Visible Light Excitation. ACS NANO 2024; 18:24391-24403. [PMID: 39164202 PMCID: PMC11386439 DOI: 10.1021/acsnano.4c07076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plasmonic catalysis has been employed to enhance molecular transformations under visible light excitation, leveraging the localized surface plasmon resonance (LSPR) in plasmonic nanoparticles. While plasmonic catalysis has been employed for accelerating reaction rates, achieving control over the reaction selectivity has remained a challenge. In addition, the incorporation of catalytic components into traditional plasmonic-catalytic antenna-reactor nanoparticles often leads to a decrease in optical absorption. To address these issues, this study focuses on the synthesis of bimetallic core@shell Au@AuPd nanoparticles (NPs) with ultralow loadings of palladium (Pd) into gold (Au) NPs. The goal is to achieve NPs with an Au core and a dilute alloyed shell containing both Au and Pd, with a low Pd content of around 10 atom %. By employing the (photo)electrocatalytic nitrite reduction reaction (NO2RR) as a model transformation, experimental and theoretical analyses show that this design enables enhanced catalytic activity and selectivity under visible light illumination. We found that the optimized Pd distribution in the alloyed shell allowed for stronger interaction with key adsorbed species, leading to improved catalytic activity and selectivity, both under no illumination and under visible light excitation conditions. The findings provide valuable insights for the rational design of antenna-reactor plasmonic-catalytic NPs with controlled activities and selectivity under visible light irradiation, addressing critical challenges to enable sustainable molecular transformations.
Collapse
Affiliation(s)
- Kaline N da Silva
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Shwetha Shetty
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Sam Sullivan Allsop
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shiqi Wang
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Jhon Quiroz
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Mykhailo Chundak
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Hugo L S Dos Santos
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - IbrahiM Abdelsalam
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Freddy E Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Mostoles, Madrid, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Mostoles, Madrid, Spain
| | - Niko Heikkinen
- VTT Technical Research Centre of Finland, P O Box 1000, FIN-02044 Espoo, Finland
| | - Elton Sitta
- Department of Chemistry, Federal University of Sao Carlos, Rod. Washington Luis, km 235, Sao Carlos 13565-905, Brazil
| | - Tiago V Alves
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 14740170-115 Salvador, BA, Brazil
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| | - Wenyi Huo
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock 05-400, Poland
| | - Thomas J A Slater
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland
| |
Collapse
|
6
|
Kim D, Kim H. Optimization of photothermal therapy conditions through diffusion analysis based on the initial injection radius of AuNPs. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3854. [PMID: 39051128 DOI: 10.1002/cnm.3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Anticancer treatment is performed in various ways, and photothermal therapy (PTT) is gaining traction from a noninvasive treatment perspective. PTT is a treatment technique based on the photothermal effect that kills tumors by increasing their temperature. In this study, gold nanoparticles (AuNPs), which are photothermal agents, were used in numerical simulations to determine the PTT effect by considering diffusion induced changes in the distribution area of the AuNPs. The treatment effect was confirmed by varying the initial injection radius of AuNPs represented by the injection volume, the elapsed time after injection of AuNPs, and the laser intensity. The degree of maintenance of the apoptotic temperature band in the tumor was quantitatively analyzed by the apoptotic variable. Ultimately, if the initial injection radius of AuNPs is 0.7 mm or less, the optimal time to start treatment is 240 min after injection, and for 1.0 and 1.2 mm, it is optimal to start treatment when the elapsed time after injection is 90 and 30 min, respectively. This study identified the optimal treatment conditions for dosage of AuNPs and treatment start time in PTT using AuNPs, which will serve as a reference point for future PTT studies.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, Korea
| | - Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, Korea
| |
Collapse
|
7
|
Lin X, Cheng M, Chen X, Zhang J, Zhao Y, Ai B. Unlocking Predictive Capability and Enhancing Sensing Performances of Plasmonic Hydrogen Sensors via Phase Space Reconstruction and Convolutional Neural Networks. ACS Sens 2024; 9:3877-3888. [PMID: 38741258 DOI: 10.1021/acssensors.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study innovates plasmonic hydrogen sensors (PHSs) by applying phase space reconstruction (PSR) and convolutional neural networks (CNNs), overcoming previous predictive and sensing limitations. Utilizing a low-cost and efficient colloidal lithography technique, palladium nanocap arrays are created and their spectral signals are transformed into images using PSR and then trained using CNNs for predicting the hydrogen level. The model achieves accurate predictions with average accuracies of 0.95 for pure hydrogen and 0.97 for mixed gases. Performance improvements observed are a reduction in response time by up to 3.7 times (average 2.1 times) across pressures, SNR increased by up to 9.3 times (average 3.9 times) across pressures, and LOD decreased from 16 Pa to an extrapolated 3 Pa, a 5.3-fold improvement. A practical application of remote hydrogen sensing without electronics in hydrogen environments is actualized and achieves a 0.98 average test accuracy. This methodology reimagines PHS capabilities, facilitating advancements in hydrogen monitoring technologies and intelligent spectrum-based sensing.
Collapse
Affiliation(s)
- Xiangxin Lin
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Mingyu Cheng
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Xinyi Chen
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Jinglan Zhang
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602 , United States
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| |
Collapse
|
8
|
Meng K, Zhang J, Cheng B, Ren X, Xia Z, Xu F, Zhang L, Yu J. Plasmonic Near-Infrared-Response S-Scheme ZnO/CuInS 2 Photocatalyst for H 2O 2 Production Coupled with Glycerin Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406460. [PMID: 38837488 DOI: 10.1002/adma.202406460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Solar fuel synthesis is intriguing because solar energy is abundant and this method compensates for its intermittency. However, most photocatalysts can only absorb UV-to-visible light, while near-infrared (NIR) light remains unexploited. Surprisingly, the charge transfer between ZnO and CuInS2 quantum dots (QDs) can transform a NIR-inactive ZnO into a NIR-active composite. This strong response is attributed to the increased concentration of free charge carriers in the p-type semiconductor at the interface after the charge migration between ZnO and CuInS2, enhancing the localized surface plasmon resonance (LSPR) effect and the NIR response of CuInS2. As a paradigm, this ZnO/CuInS2 heterojunction is used for H2O2 production coupled with glycerin oxidation and demonstrates supreme performance, corroborating the importance of NIR response and efficient charge transfer. Mechanistic studies through contact potential difference (CPD), Hall effect test, and finite element method (FEM) calculation allow for the direct correlation between the NIR response and charge transfer. This approach bypasses the general light response issues, thereby stepping forward to the ambitious goal of harnessing the entire solar spectrum.
Collapse
Affiliation(s)
- Kai Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xingang Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230039, P. R. China
| | - Zhaosheng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230039, P. R. China
| | - Feiyan Xu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Cao E, Cao Y, Sun M. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis. Anal Chem 2024; 96:11623-11638. [PMID: 38490972 DOI: 10.1021/acs.analchem.3c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Mu S, He Y, Wang Y, Chen W, Lv C, Liang X, Xiang W, Chen Z. AuBr 3 Induces CsPb(Br/I) 3 QDs to Self-Assemble into Nanowires. SMALL METHODS 2024:e2400143. [PMID: 39011732 DOI: 10.1002/smtd.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Indexed: 07/17/2024]
Abstract
Perovskite quantum dots can form various forms such as nanowires, nanorods, and nanosheets through self-assembly. Nanoscale self-assembly can be used to fabricate materials with excellent device properties. This study introduces AuBr3 into CsPb(Br/I)3 quantum dots, causing them to assemble into nanowires. The nanowires form because part of Au3+ is surface-doped to replace Pb2+, and the [PbX6]4- octahedral structure is distorted. The symmetry of the structural surface is broken, and a dipole-moment-induced field is generated, thus promoting self-assembly. Moreover, the presence of Au nanoparticles (NPs) causes a localized surface plasmon resonance and generates strong van der Waals forces that promote self-assembly. Finally, to test other applications of perovskite nanowires, the solution method is used to prepare films by compounding the sample solution and polystyrene (PS) for backlighted displays.
Collapse
Affiliation(s)
- Shouying Mu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ye He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - YueLi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wei Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Weidong Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhaopin Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| |
Collapse
|
11
|
Lu X, Ma Z, Chang Y, Wang S, Li X, Xu D, Bao J, Liu Y. Mott-Schottky Construction Boosted Plasmon Thermal and Electronic Effects on the Ag/CoV-LDH Nanohybrids for Highly-Efficient Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313057. [PMID: 38768957 DOI: 10.1002/adma.202313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Mott-Schottky construction and plasmon excitation represent two highly-efficient and closely-linked coping strategies to the high energy loss of oxygen evolution reaction (OER), but the combined effect has rarely been investigated. Herein, with Ag nanoparticles as electronic structure regulator and plasmon exciter, Ag/CoV-LDH@G nanohybrids (NHs) with Mott-Schottky heterojunction and notable plasmon effect are well-designed. Combining theoretical calculations with experiments, it is found that the Mott-Schottky construction modulates the Fermi level/energy band structure of CoV-LDH, which in turn leads to lowered d-band center (from -0.89 to -0.93), OER energy barrier (from 6.78 to 1.31 eV), and preeminent plasmon thermal/electronic effects. The thermal effect can offset the endothermic enthalpy change of OER, promote the deprotonation of *OOH, and accelerate electron transfer kinetics. Whereas the electronic effect can increase the density of charge carriers (from 0.70 × 1020 to 1.64 × 1020 cm-3), lower the activation energy of OER (from 30.3 to 17.7 kJ mol-1). Benefiting from these favorable factors, the Ag/CoV-LDH@G NHs show remarkable electrocatalytic performances, with an overpotential of 178 and 263 mV to afford 10 and 100 mA cm-2 for OER, respectively, and a low cell voltage of 1.42 V to drive 10 mA cm-2 for overall water splitting under near-infrared light irradiation.
Collapse
Affiliation(s)
- Xuyun Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhangyu Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yanan Chang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shasha Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoxuan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Dongdong Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
12
|
Kubiak A. Comprehensive spectroscopy and photocatalytic activity analysis of TiO 2-Pt systems under LED irradiation. Sci Rep 2024; 14:13827. [PMID: 38879712 PMCID: PMC11180208 DOI: 10.1038/s41598-024-64748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
This study presents a thorough spectroscopic analysis of TiO2-Pt systems under LED irradiation, with a focus on elucidating the photodeposition process of Pt nanoparticles onto TiO2 surfaces. The methodology leverages an innovative LED photoreactor tailored to a specific spectral range, enabling precise characterization of the excitation spectrum of TiO2-Pt composites. Through the identification of Pt precursor species and their excitation under LED-UV light, a photodeposition mechanism is proposed involving concurrent excitation of both the TiO2 semiconductor and the H2PtCl6 precursor. The LED photoreactors are employed to scrutinize the excitation profile of TiO2-Pt materials, revealing that the incorporation of Pt nanoparticles does not expand TiO2's absorption spectrum. Furthermore, UV-A exposure in the absence of Pt did not induce the formation of surface defects, underscoring the lack of visible light activity in TiO2-Pt systems. Spectroscopic analyses, complemented by naproxen photooxidation experiments, indicate the absence of a significant plasmonic effect in Pt nanoparticles within the experimental framework. Mass spectroscopy results corroborate the presence of distinct naproxen degradation pathways, suggesting minimal influence from photocatalyst properties. This research provides a detailed spectroscopic insight into TiO2-Pt photocatalysis, enriching the knowledge of photocatalytic materials in LED lighting.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, PL-61614, Poznan, Poland.
| |
Collapse
|
13
|
Hu X, Chen X, Zhang X, Meng Y, Xia G, Yu X, Sun D, Fang F. In Situ Construction of Interface with Photothermal and Mutual Catalytic Effect for Efficient Solar-Driven Reversible Hydrogen Storage of MgH 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400274. [PMID: 38520071 PMCID: PMC11165547 DOI: 10.1002/advs.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Hydrogen storage in MgH2 is an ideal solution for realizing the safe storage of hydrogen. High operating temperature, however, is required for hydrogen storage of MgH2 induced by high thermodynamic stability and kinetic barrier. Herein, flower-like microspheres uniformly constructed by N-doped TiO2 nanosheets coated with TiN nanoparticles are fabricated to integrate the light absorber and thermo-chemical catalysts at a nanometer scale for driving hydrogen storage of MgH2 using solar energy. N-doped TiO2 is in situ transformed into TiNxOy and Ti/TiH2 uniformly distributed inside of TiN matrix during cycling, in which TiN and Ti/TiHx pairs serve as light absorbers that exhibit strong localized surface plasmon resonance effect with full-spectrum light absorbance capability. On the other hand, it is theoretically and experimentally demonstrated that the intimate interface between TiH2 and MgH2 can not only thermodynamically and kinetically promote H2 desorption from MgH2 but also simultaneously weaken Ti─H bonds and hence in turn improve H2 desorption from the combination of weakened Ti─H and Ti─H bonds. The uniform integration of photothermal and catalytic effect leads to the direct action of localized heat generated from TiN on initiating the catalytic effect in realizing hydrogen storage of MgH2 with a capacity of 6.1 wt.% under 27 sun.
Collapse
Affiliation(s)
- Xuechun Hu
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Xiaowei Chen
- Department of PhysicsJimei UniversityXiamen361021P. R. China
| | - Xiaoyue Zhang
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Yang Meng
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Guanglin Xia
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Xuebin Yu
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Dalin Sun
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Fang Fang
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
| |
Collapse
|
14
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
Al-Amin M, Hemmer JV, Joshi PB, Fogelman K, Wilson AJ. Quantification and description of photothermal heating effects in plasmon-assisted electrochemistry. Commun Chem 2024; 7:70. [PMID: 38561493 PMCID: PMC10984925 DOI: 10.1038/s42004-024-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
A growing number of reports have demonstrated plasmon-assisted electrochemical reactions, though debate exists around the mechanisms underlying the enhanced activity. Here we address the impact of plasmonic photothermal heating with cyclic voltammetry measurements and finite-element simulations. We find that plasmonic photothermal heating causes a reduction in the hysteresis of the anodic and cathodic waves of the voltammograms along with an increase in mass-transport limiting current density due to convection induced by a temperature gradient. At slow scan rates, a temperature difference as low as 1 K between the electrode surface and bulk electrolytic solution enhances the current density greater than 100%. Direct interband excitation of Au exclusively enhances current density by photothermal heating, while plasmon excitation leads to photothermal and nonthermal enhancements. Our study reveals the role of temperature gradients in plasmon-assisted electrochemistry and details a simple control experiment to account for photothermal heating.
Collapse
Affiliation(s)
- Md Al-Amin
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Johann V Hemmer
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Padmanabh B Joshi
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
- Duke University, Durham, NC, 27708, USA
| | - Kimber Fogelman
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Andrew J Wilson
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
16
|
Wei Y, Mao Z, Jiang TW, Li H, Ma XY, Zhan C, Cai WB. Uncovering Photoelectronic and Photothermal Effects in Plasmon-Mediated Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202317740. [PMID: 38318927 DOI: 10.1002/anie.202317740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Plasmon-mediated electrocatalysis that rests on the ability of coupling localized surface plasmon resonance (LSPR) and electrochemical activation, emerges as an intriguing and booming area. However, its development seriously suffers from the entanglement between the photoelectronic and photothermal effects induced by the decay of plasmons, especially under the influence of applied potential. Herein, using LSPR-mediated CO2 reduction on Ag electrocatalyst as a model system, we quantitatively uncover the dominant photoelectronic effect on CO2 reduction reaction over a wide potential window, in contrast to the leading photothermal effect on H2 evolution reaction at relatively negative potentials. The excitation of LSPR selectively enhances the CO faradaic efficiency (17-fold at -0.6 VRHE ) and partial current density (100-fold at -0.6 VRHE ), suppressing the undesired H2 faradaic efficiency. Furthermore, in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) reveals a plasmon-promoted formation of the bridge-bonded CO on Ag surface via a carbonyl-containing C1 intermediate. The present work demonstrates a deep mechanistic understanding of selective regulation of interfacial reactions by coupling plasmons and electrochemistry.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zijie Mao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Tian-Wen Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
17
|
Shi Z, Wu P, Xi H, You T, Gao Y, Yin P. Exploring the surface plasmon catalytic reactions mechanism by three-phase interface modification combining with in-situ EC-SERS methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123834. [PMID: 38198990 DOI: 10.1016/j.saa.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Local surface plasmon resonance (LSPR) is a novel catalytic technique that has emerged in recent years, especially in the catalysis of aromatic amine compounds. However, the response process and mechanism are still unclear in current study. In the current field of study, the response process and mechanism are still unclear. In this work, the gas-liquid-solid three-phase interface (GLSTI) was innovatively utilized in this study to validate the reaction mechanism by surface-enhanced Raman spectroscopy. P-Aminothiophenol (PATP) and P-Phenylenediamine (PDA) underwent a surface plasmon-catalyzed reaction by using a silver nano-dendrites substrate with strong SERS activity. The GLSTI significantly facilitates the occurrence of surface plasmon catalytic reactions, which can supply enough oxygen by providing three-phase points. In situ SERS and EC-SERS technologies were combined in this study for the explorations. Therefore, this work is dedicated to deepening the exploration and expanding into new directions in plasmon-induced catalytic reactions.
Collapse
Affiliation(s)
- Ziqian Shi
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Pengfei Wu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Hongyan Xi
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Tingting You
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Yukun Gao
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
18
|
Zhang T, Zhu J, Wang Q, Xie M, Meng K, Mao L, Yang L, Pan T, Gao M, Yao G, Lin Y. Flexible Antibacterial Respiratory Monitoring Sensor Based on Controllable Au-Modified Surface of Highly {001} Preferred Anatase Titanium Dioxide Thin Film. ACS Biomater Sci Eng 2024; 10:1722-1733. [PMID: 38373308 DOI: 10.1021/acsbiomaterials.3c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Respiratory signals are critical clinical diagnostic criteria for respiratory diseases and health conditions, and respiratory sensors play a crucial role in achieving the desired respiratory monitoring effect. High sensitivity to a single factor can improve the reliability of respiratory monitoring, and maintaining the hygiene of the sensors is also important for daily health monitoring. Herein, we propose a flexible Au-modified anatase titanium dioxide resistive respiratory sensor, which can be mechanically compliantly attached to curved surfaces for respiratory monitoring in different modalities (i.e., respiratory intensity, frequency, and rate). The uniform and preferentially oriented anatase titanium dioxide films gained by the polymer-assisted deposition technique can be fabricated on flexible substrates through a liquid-assisted transferring process. The Au modification can enhance surface plasmon resonance to facilitate the photocatalytic activity of titanium dioxide, and the optimized distribution of Au on the surface of titanium dioxide film made the sensor have an excellent antibacterial effect. The uniquely designed encapsulation can effectively control the contact between the surface of titanium dioxide films and electrodes, allowing the flexible sensor to exhibit fast response time (0.71 s) and recovery time (1.06 s) to respiratory as well as insensitivity or low sensitivity to other factors (i.e., gas composition, humidity, temperature, stress, and strain). This work provided an effective strategy for flexible wearable respiratory sensors and has great potential in daily respiratory monitoring for health management and pandemic control.
Collapse
Affiliation(s)
- Tianyao Zhang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China
| | - Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Wang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Maowen Xie
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longbiao Mao
- Department of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Li Yang
- Department of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guang Yao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
19
|
Tao QQ, Xu CH, Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence imaging of plasmon-induced electrochemical reactions at single nanocatalysts. Chem Commun (Camb) 2024; 60:2520-2523. [PMID: 38324194 DOI: 10.1039/d4cc00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
This study explores plasmon-induced electrochemical reactions on single nanoparticles using electrogenerated chemiluminescence microscopy (ECLM). Under laser irradiation, real-time screening showed lower plasmon-induced reaction efficiency for bimetallic Au@Pt nanoparticles compared to monometallic Au nanoparticles. ECLM offers a high-throughput imaging and precise quantitative approach for analyzing photo-electrochemical conversion at single nanoparticle level, valuable for both theoretical exploration and optimization of plasmonic nanocatalysts.
Collapse
Affiliation(s)
- Qian-Qian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
20
|
Bagnall AJ, Ganguli S, Sekretareva A. Hot or Not? Reassessing Mechanisms of Photocurrent Generation in Plasmon-Enhanced Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202314352. [PMID: 38009712 DOI: 10.1002/anie.202314352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
It is now widely accepted that certain effects arising from localised surface plasmon resonance, such as enhanced electromagnetic fields, hot carriers, and thermal effects, can facilitate electrocatalytic processes. This newly emerging field of research is commonly referred to as plasmon-enhanced electrocatalysis (PEEC) and is attracting increasing interest from the research community, particularly regarding harnessing the high energy of hot carriers. However, this has led to a lack of critical analysis in the literature, where the participation of hot carriers is routinely claimed due to their perceived desirability, while the contribution of other effects is often not sufficiently investigated. As a result, correctly differentiating between the possible mechanisms at play has become a key point of contention. In this review, we specifically focus on the mechanisms behind photocurrents observed in PEEC and critically evaluate the possibility of alternative sources of current enhancement in the reported PEEC systems. Furthermore, we present guidelines for the best experimental practices and methods to distinguish between the various enhancement mechanisms in PEEC.
Collapse
Affiliation(s)
- Andrew J Bagnall
- Department of Chemistry, Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Sagar Ganguli
- Department of Chemistry, Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Alina Sekretareva
- Department of Chemistry, Ångström, Uppsala University, 75120, Uppsala, Sweden
| |
Collapse
|
21
|
Zhang M, Zhang Z, Yang Z, Cai W, Zhong Q, Luo L, Chen E, Zhang C. Single-double-band switchable optical circular polarizers based on surface plasmon resonance. APPLIED OPTICS 2024; 63:1153-1159. [PMID: 38437414 DOI: 10.1364/ao.513837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024]
Abstract
A single-double-band switchable circular polarization filter based on surface plasmon resonance exhibits significant potential for applications in fields such as communication and sensing due to its adjustable, low-cost, and easy integration features. In this study, we propose a bi-layer rod nanostructure and use FEM simulation to study the transmission spectra of the structure. The results demonstrate that the structure exhibits both single- and double-band circular polarization filtering effects, which can be switched by varying geometric parameters such as the distance between the two layers and the width of nanorods. Furthermore, the filtering effects of both single- and double-band are highly dependent on the length of the nanorods, with average extinction rates reaching 486 and 2020/129, respectively; the operating bandwidths (defined as extinction ratio >10) can reach 170 nm and 35 nm/70 nm, respectively. The underlying physical mechanisms are clarified by analyzing the electric dipole, magnetic dipole resonance modes, and induced chiral fields on nanostructures.
Collapse
|
22
|
Zhao X, Chen Y, Niu R, Tang Y, Chen Y, Su H, Yang Z, Jing X, Guan H, Gao R, Meng L. NIR Plasmonic Nanozymes: Synergistic Enhancement Mechanism and Multi-Modal Anti-Infection Applications of MXene/MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307839. [PMID: 37812814 DOI: 10.1002/adma.202307839] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Nanozymes are considered as the promising antimicrobial agents due to the enzyme-like activity for chemo-dynamic therapy (CDT). However, it remains a challenge to develop novel nanozyme systems for achieving stimuli-responsive, and efficient nanozyme catalysis with multimodal synergistic enhancement. In this work, a near-infrared (NIR) plasmonic-enhanced nanozyme catalysis and photothermal performance for effective antimicrobial applications are proposed. A Ti3 C2 MXene/Fe-MOFs composite (MXM) with NIR plasmonic-enhanced CDT combined with photothermal properties is successfully developed by loading metal-organic framework (MOF) nanozymes onto Ti3 C2 MXene. The mechanism of NIR induced localized surface plasmon resonance (LSPR)-enhanced CDT and photothermal therapy (PTT) is well explained through activation energy (Ea ), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), fluorescence analysis experiments, and finite element simulation. It reveals that MXene nanosheets exhibit NIR plasmon exciters and generate hot electrons that can transfer to the surface of Fe-MOFs, promoting the Fenton reaction and enhances CDT. While the photothermal heating of MXene produced by LSPR can also boost the CDT of Fe-MOFs under NIR irradiation. Both in vitro and in vivo experimental results demonstrate that LSPR-induced MXM system has outstanding antimicrobial properties, can promote angiogenesis and collagen deposition, leading to the accelerated wound healing.
Collapse
Affiliation(s)
- Xiaoping Zhao
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yang Chen
- Department of Burns and Cutaneous Surgery Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, P. R. China
| | - Ruoxin Niu
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ye Tang
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yanni Chen
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huining Su
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiwei Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, P. R. China
| | - Rui Gao
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lingjie Meng
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
23
|
Chen L, Xu Y, Su L, He T, Zhang L, Shen H, Cheng Q, Liu L, Bai S, Hong SH. Visible-Light-Enhanced Hydrogen Evolution through Anodic Furfural Electro-Oxidation Using Nickel Atomically Dispersed Copper Nanoparticles. Inorg Chem 2024; 63:730-738. [PMID: 38100509 DOI: 10.1021/acs.inorgchem.3c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A novel copper nanoparticle variant, denoted as Cu98Ni2 NPs, which incorporate Ni atoms in an atomically dispersed manner, has been successfully synthesized via a straightforward one-pot electrochemical codeposition process. These nanoparticles were subsequently employed as an anode to facilitate the oxidation of furfural, leading to the production of hydrogen gas. Voltammetric measurements revealed that the inclusion of trace amounts of Ni atoms in the nanoparticles resulted in a pronounced synergistic electronic effect between Cu and Ni. Consequently, a 43% increase in current density at 0.1 V was observed in comparison to pure Cu NPs. Importantly, when the Cu98Ni2 NPs were irradiated with visible light, a remarkable current density enhancement factor of 505% at 0.1 V was achieved relative to that of pure Cu NPs in the absence of light. This enhancement can be attributed to localized surface plasmon resonance induced by visible light, which triggers photothermal and photoelectric effects. These effects collectively contribute to the significant overall improvement in the electrocatalytic oxidation of furfural, leading to enhanced hydrogen evolution.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Yuan Xu
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Liuyu Su
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Tao He
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Liqiu Zhang
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Hongxia Shen
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Qiong Cheng
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Lichun Liu
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Song Bai
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
| | - Soon Hyung Hong
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| |
Collapse
|
24
|
Nie L, Zeng X, Li H, Wang S, Yu R. Enzyme-assisted amplification of target cycle triggers the unlocking of locked hairpin probes for let-7a detection. Talanta 2024; 266:125023. [PMID: 37549569 DOI: 10.1016/j.talanta.2023.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The detection of miRNA in cells is difficult owing to its substantially low cellular content. Therefore, developing a highly sensitive sensor to detect cellular miRNA remains a significant challenge. Herein, we report an enzyme-assisted biosensor with target cycle amplification that can trigger the unlocking of locked hairpin probes for sensitive and robust let-7a gene detection. In the research, three kinds of hairpin probes were skillfully designed. The hairpin probe comprises a complementary sequence of a target, primer, and recognition site of Nt. BbvCI restriction endonucleases. In addition, the alternating synergistic impact of polymerase and the nicking enzyme generates considerable triggers to unlock the locked hairpin probe LH1, consequently triggering a subsequent circulating strand displacement reaction to form a stable H1-H2 double strand to ensure sufficient distance between a fluorophore on H1 and a quenching group on bolt DNA (bDNA), and resulting in the recovery of fluorescence. Furthermore, this process does not require complicated operation procedures and instruments, and the target gene let-7a can be sensitively detected. Specifically, the detection limit of the biosensor is as low as 160 fM, and its linear range is 0.5 pM-250 nM. Moreover, this biosensor can be employed to detect let-7a in human serum with good selectivity.
Collapse
Affiliation(s)
- Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Xiaogang Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
25
|
Sun Y, Zhang C, Yang YT, Yu H, Li JH. Polarization-Sensitive Asymmetric Scattering at the Single-Particle Scale via Surface Plasmon Resonance Microscopy. Anal Chem 2023; 95:18898-18906. [PMID: 38096497 DOI: 10.1021/acs.analchem.3c04987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Surface plasmon resonance microscopy (SPRM), based on the scattering of single molecules at the interface, is a highly efficient analytical platform widely used in the fields of biology and chemistry. Due to the interference scattering, the imaging pattern exhibits typical parabolic tail and phase transition features, providing a quantitative means of observing the changes in the physical and chemical properties of single molecules. In this work, we reported another unique asymmetric parabolic distribution pattern resulting from polarization conversion in the experiment based on SPRM. This microscopic-level feature is derived from the switching between SPR resonant and nonresonant states. Starting from energy flux theory, we constructed an analysis model and conducted full-wave numerical simulations to verify the experimental results. Furthermore, we demonstrate that the optical rotation induced by chiral thin films can be directly measured through imaging with asymmetric features, providing valuable insights into the field of chiral materials. The quantitative interpretation of asymmetric scattering not only advances the fundamental understanding of the imaging mechanism of SPRM, but also opens up possibilities for utilizing this polarization-sensitive characteristic for single-particle detection and sensing in the future.
Collapse
Affiliation(s)
- Yi Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Cheng Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Ting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing-Hong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| |
Collapse
|
26
|
You X, Zhang D, Zhang XG, Li X, Tian JH, Wang YH, Li JF. Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy. NANO-MICRO LETTERS 2023; 16:53. [PMID: 38108934 PMCID: PMC10728385 DOI: 10.1007/s40820-023-01285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
Collapse
Affiliation(s)
- Xueqiu You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Dongao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiangyu Li
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China.
| |
Collapse
|
27
|
Shen B, Chen D, Li R, Qi Y, Gao A, Zhong H. Mass spectrometric monitoring of ligand-bridged hot electron transfer and anaerobic oxidization on auto renewable droplet-based plasmonic nanoreactors under visible light illumination. Anal Chim Acta 2023; 1283:341965. [PMID: 37977789 DOI: 10.1016/j.aca.2023.341965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The light induced hot-electron on plasmonic nanostructures has been recognized as a breakthrough discovery for photovoltaic and photocatalytic applications. With mass spectrometry, we demonstrate the dynamics of hot electron transfers of anaerobic oxidization reactions on Au decorated TiO2 plasmonic nanoparticles, which were coated on the inner surface of a flask. Those nanoparticles were covered by continuously renewed liquid droplets of solvent and reactants that were transported through a Venturi jet mixer with auto-spray. In addition to intensive mass transfer in such droplet-based nanoreactors, as well as strong adsorption of reactants and rapid desorption of products on materials surfaces, the localized surface plasmon resonance (LSPR) excitation upon visible light illumination, by which accumulated energies of plasmons are transferred to electrons in the conduction band of the material, attributes to the efficient photocatalytic transformation. Mass spectrometric detection of intermediate radical anions and negative ions with stable isotope labeling unambiguously identifies that highly energetic hot electrons can escape from the plasmonic nanostructures, be collected by adsorbed molecules, and initiate bond cleavages. It was demonstrated that losses of two H atoms result in the anaerobic oxidization of each benzyl alcohol molecule to a benzyl aldehyde molecule in the absence of molecular oxygen with more than 90 % yields. The well recyclable plasmonic nanoreactors implicate the injection of transferred electrons eventually back to electronically depleted Au+ positive ions. Bridged by adsorbed molecules, electrons were repeatedly circulated back and forth in plasmonic nanoreactors, where the collected light was eventually converted into chemical energy.
Collapse
Affiliation(s)
- Baojie Shen
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Disong Chen
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Rui Li
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Yinghua Qi
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Anji Gao
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongying Zhong
- Center for Instrumental Analysis, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
28
|
Wang Y, Sang X, Wu F, Pang Y, Xu G, Yuan Y, Hsu HY, Niu W. Boosting plasmon-enhanced electrochemistry by in situ surface cleaning of plasmonic nanocatalysts. NANOSCALE 2023; 15:18901-18909. [PMID: 37975296 DOI: 10.1039/d3nr04606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The application of surface plasmons in heterogeneous catalysis has attracted widespread attention due to their promising potential for harvesting solar energy. The effect of surface adsorbates on catalysts has been well documented in many traditional reactions; nonetheless, their role in plasmonic catalysis has been rarely studied. In this study, an in situ electrochemical surface cleaning strategy is developed and the influence of surface adsorbates on plasmon-enhanced electrochemistry is investigated. Taking Au nanocubes as an example, plasmonic catalysts with clean surfaces are obtained by Cu2O coating and in situ electrochemical etching. During this process, the surface adsorbates of Au nanocubes are removed together with the Cu2O shells. The Au nanocubes with clean surfaces exhibit remarkable performance in plasmon-enhanced electrooxidation of glucose and an enhancement of 445% is demonstrated. The Au NCs with clean surfaces can not only provide more active sites but also avoid halides as hole scavengers, and therefore, the efficient utilization of hot holes by plasmonic excitation is achieved. This process is also generalized to other molecules and applied in electrochemical sensing with high sensitivity. These results highlight the critical role of surface adsorbates in plasmonic catalysis and may forward the design of efficient plasmonic catalysts for plasmon-enhanced electrochemistry.
Collapse
Affiliation(s)
- Yu Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Xueqing Sang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Yuanhao Pang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| |
Collapse
|
29
|
Meng X, Hang T, Zhou H, Zhang Z, Li C. Fabrication and nano-engineering of non-/noble metal-coupled plasmonic heterostructures for ultrasensitive photoelectrochemical immunoassays. Anal Chim Acta 2023; 1271:341472. [PMID: 37328251 DOI: 10.1016/j.aca.2023.341472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
To achieve reliable and ultrasensitive detection for disease markers in PEC bioanalysis, constructing and nano-engineering of ideal photoelectrodes and signal transduction strategies are of vital importance. Herein, a non-/noble metal coupled plasmonic nanostructure (TiO2/r-STO/Au) was tactically designed with high-efficient PEC performance. Evidenced by the DFT and FDTD calculations, the reduced SrTiO3 (r-STO) was found to support the localized surface plasmon resonance due to the sufficiently increased and delocalized local charge in r-STO. Under the synergistic coupling of plasmonic r-STO and AuNPs, the PEC performance of TiO2/r-STO/Au was found remarkably promoted with reduced onset potential. This merit supported TiO2/r-STO/Au as a self-powered immunoassay via a proposed oxygen-evolution-reaction mediated signal transduction strategy. With the increase of the target biomolecules (PSA), the catalytic active sites of TiO2/r-STO/Au would be blocked and result in the decrease of the oxygen evaluation reaction. Under optimal conditions, the immunoassays exhibited an excellent detection performance with a LOD as low as 1.1 fg/mL. This work proposed a new type of plasmonic nanomaterial for ultrasensitive PEC bioanalysis.
Collapse
Affiliation(s)
- Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Tianxiang Hang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Hui Zhou
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Zongrui Zhang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China.
| |
Collapse
|
30
|
Liu Y, Tao Y, Lu Z, Teng J, Hao W, Lin J, Li G. NaCl template-assisted construction of a CoP-MoP heterostructured electrocatalyst for electrocatalytic nitrogen reduction. Dalton Trans 2023; 52:11631-11637. [PMID: 37551580 DOI: 10.1039/d3dt00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) to ammonia is a promising technology to store renewable energy and mitigate greenhouse gas emissions. However, it usually suffers from low ammonia yield and selectivity because of the lack of efficient electrocatalysts. Herein, we report that the construction of metal phosphide heterojunctions is an efficient strategy for NRR activity enhancement. A CoP-MoP heterojunction electrocatalyst, which is fabricated by a facile NaCl template-assisted strategy, exhibits a favorable ammonia yield rate of 77.8 μg h-1 mgcat-1 (38.9 μg h-1 cm-2) and a high faradaic efficiency of 11.16% at -0.50 V versus the reversible hydrogen electrode. The high NRR electrocatalytic activity can be attributed to the electronic coupling effects and interfacial synergistic effects of CoP and MoP at the heterojunction interface, which accelerates the electron transfer rate. Moreover, Mo doping changes the d-band centers of metal sites on the CoP surface, which is conducive to N2 adsorption and promotes N2* adsorption in the competition of occupying active sites, thus inhibiting the HER. This work manifests the high potential of phosphide electrocatalysts and opens an alternative route toward NRR electrocatalysis.
Collapse
Affiliation(s)
- Yunni Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Yinghao Tao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Zhaobing Lu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Jing Teng
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Jun Lin
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
31
|
Jiang W, Sun D, Cai C, Zhang H. Sensitive detection of extracellular hydrogen peroxide using plasmon-enhanced electrochemical activity on Pd-tipped Au nanobipyramids. Analyst 2023; 148:3791-3797. [PMID: 37462115 DOI: 10.1039/d3an00829k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The fabrication of electroactive nanostructures with high electron concentration and specific electron transport is crucial for electrochemical sensing. In this study, a plasmon-enhanced electrochemical sensor has been developed for the detection of extracellular hydrogen peroxide (H2O2) from cancer cells, utilizing Pd-tipped Au nanobipyramids (PTA NBPs) as the electrocatalysts. Plasmonic PTA NBPs were synthesized by depositing Pd nanoparticles onto the tips of Au nanobipyramids (Au NBPs). Under excitation of localized surface plasmon resonance (LSPR), the PTA NBPs generate high-energy electron-hole pairs (e-/h+) on their surface. The generated electrons (e-) significantly enhance the electrochemical reduction of H2O2. Based on this, a plasmon-enhanced H2O2 electrochemical sensor is constructed with high sensitivity (986.57 μA mM-1 cm-2), low detection limit (0.02 μM), wide linear range (0.1 μM to 980 μM), and good stability and repeatability. Moreover, this sensor also enables the measurement of extracellular H2O2 derived from cancer cells (MCF-7), highlighting its potential applications in cellular biology and biomedical research.
Collapse
Affiliation(s)
- Wenli Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| | - Die Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| |
Collapse
|
32
|
Gai Q, Ren S, Zheng X, Liu W. Enhanced plasmonic photocatalytic performance of C 3N 4/Cu by the introduction of a reduced graphene oxide interlayer. Phys Chem Chem Phys 2023; 25:12754-12766. [PMID: 37128700 DOI: 10.1039/d3cp01118f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cu nanoparticles (NPs) are low-cost surface plasmonic resonance (SPR) metal nanostructures, and their SPR properties can be used to enhance the photocatalytic hydrogen evolution performance of carbon nitride (C3N4). But their actual performance is usually limited, and one key factor is their poor interfacial quality. In this work, a highly conductive reduced graphene oxide (RGO) interlayer is introduced between protonated C3N4 (PCN) nanosheets and Cu NPs, which can act as an efficient sink for photogenerated electrons from C3N4 and hot electrons from Cu NPs, and simultaneously serve as reaction sites for the hydrogen evolution reaction, and accelerate the charge transport by the formed C-O-C and C-O-Cu bonds. The optimal hydrogen evolution rate of the optimized PCN/RGO/Cu is 1.30 mmol g-1 h-1, which is 6.76, 2.47 and 2.41 times that of PCN, PCN/RGO and PCN/Cu, respectively, and it can further reach up to 13.22 mmol g-1 h-1 by loading moderate Pt NPs. Meanwhile, the introduced RGO can effectively anchor Cu NPs to enhance the stability of the photocatalyst. In addition, due to the broad SPR response of Cu NPs, a near-infrared photocatalytic performance is realized for PCN/RGO/Cu with an apparent quantum efficiency of 0.46% at 765 nm.
Collapse
Affiliation(s)
- Qixiao Gai
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China.
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shoutian Ren
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China.
| | - Xiaochun Zheng
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China.
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wenjun Liu
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China.
| |
Collapse
|
33
|
Kalvoda L, Jakoubková J, Burda M, Kwiecien P, Richter I, Kopeček J. Fiber Optic Sensor of Ammonia Gas Using Plasmonic Extraordinary Optical Transmission. SENSORS (BASEL, SWITZERLAND) 2023; 23:4065. [PMID: 37112406 PMCID: PMC10144519 DOI: 10.3390/s23084065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
While standard surface plasmon resonance (bio) sensing, relaying on propagating surface plasmon polariton sensitivity on homogeneous metal/dielectric boundaries, represents nowadays a routine sensing technique, other alternatives, such as inverse designs with nanostructured plasmonic periodic hole arrays, have been far less studied, especially in the context of gas sensing applications. Here, we present a specific application of such a plasmonic nanostructured array for ammonia gas sensing, based on a combination of fiber optics, extraordinary optical transmission (EOT) effect, and chemo-optical transducer selectively sensitive to ammonia gas. The nanostructured array of holes is drilled in a thin plasmonic gold layer by means of focused ion beam technique. The structure is covered by chemo-optical transducer layer showing selective spectral sensitivity towards gaseous ammonia. Metallic complex of 5-(4'-dialkylamino-phenylimino)-quinoline-8-one dye soaked in polydimethylsiloxane (PDMS) matrix is used in place of the transducer. Spectral transmission of the resulting structure and its changes under exposition to ammonia gas of various concentrations is then interrogated by fiber optics tools. The observed VIS-NIR EOT spectra are juxtaposed to the predictions performed by the rigorous Fourier modal method (FMM), providing useful theoretical feedback to the experimental data, and ammonia gas sensing mechanism of the whole EOT system and its parameters are discussed.
Collapse
Affiliation(s)
- Ladislav Kalvoda
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.J.); (M.B.); (P.K.); (I.R.)
| | - Jaroslava Jakoubková
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.J.); (M.B.); (P.K.); (I.R.)
| | - Milan Burda
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.J.); (M.B.); (P.K.); (I.R.)
| | - Pavel Kwiecien
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.J.); (M.B.); (P.K.); (I.R.)
| | - Ivan Richter
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.J.); (M.B.); (P.K.); (I.R.)
| | - Jaromír Kopeček
- FZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
| |
Collapse
|
34
|
Zhang K, Wang C, Guo S, Li S, Wu Z, Hata S, Li J, Shiraishi Y, Du Y. Photoelectrocatalytic oxidation of ethylene glycol on trimetallic PdAgCu nanospheres enhanced by surface plasmon resonance. J Colloid Interface Sci 2023; 636:559-567. [PMID: 36669449 DOI: 10.1016/j.jcis.2023.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The notable surface plasmon resonance (SPR) effect of some metals has been applied to improve the efficiency of alcohol oxidation reactions, whereas the comprehensive investigation of Cu-assisted photoelectrocatalysis remains challenging. We herein successfully prepared trimetallic PdAgCu nanospheres (NSs) with abundant surface bulges for the advanced ethylene glycol oxidation reaction (EGOR) and compared them with bimetallic PdAg NSs to investigate the performance enhancement mechanism. Impressively, the as-optimized PdAgCu NSs exhibited superb mass activity and electrochemical stability. Moreover, under visible light illumination, the mass activity of PdAgCu NSs increased to 1.62 times compared to that in the dark, and in contrast, the mass activity of PdAg NSs only increased to 1.48 times that in the dark. A mechanistic study indicated that the incorporation of Cu not only strengthens the whole SPR effect of PdAgCu NSs but also further modifies the electronic structure of Pd. This work highlighted that the incorporation of Cu into PdAg NSs further enhanced the photoelectrocatalytic performance and increased noble metal atom utilization, which may provide guidance to fabricate novel and promising nanocatalysts in the field of photoelectrocatalysis.
Collapse
Affiliation(s)
- Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
35
|
Liu W, Li B, Zhao J. Efficient adsorption and photodegradation of various organic dyes over B-doped TiO2-x. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
36
|
Zhang ZN, Hong QL, Wang XH, Huang H, Li SN, Chen Y. Au Nanowires Decorated Ultrathin Co 3 O 4 Nanosheets toward Light-Enhanced Nitrate Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300530. [PMID: 36971299 DOI: 10.1002/smll.202300530] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3 RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3 RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3 O4 nanosheets (Co3 O4 -NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3 RR. As the result, the Co3 O4 -NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h-1 mgcat -1 ) toward nitrate-to-ammonia. Importantly, the Co3 O4 -NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3 RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h-1 mgcat -1 . This study reveals the structure-activity relationship of heterostructure and LSPR-promotion effect toward NO3 RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.
Collapse
Affiliation(s)
- Ze-Nong Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qing-Ling Hong
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xiao-Hui Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
37
|
Scarabelli L. Towards Electrochemiluminescence Microscopy Exploration of Plasmonic-Mediated Phenomena at the Single-Nanoparticle Level. Angew Chem Int Ed Engl 2023; 62:e202217614. [PMID: 36622357 DOI: 10.1002/anie.202217614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
The rational design of functional plasmonic metasurfaces and metamaterials requires the development of high-throughput characterization techniques compatible with operando conditions and capable of addressing single-nanostructures. In their work, Wei et al. demonstrate the use of electrochemiluminescence microscopy to investigate the mechanism behind plasmon-enhanced luminescence induced by gold nanostructures. The use of gold plasmonic arrays was exploited to achieve the rapid spectroscopic evaluation of all the individual nanostructures, and the correlation of the results with high- resolution electron microscopy analysis, guaranteeing a strict one-to-one correspondence. The authors were able to identify two different mechanisms for the enhancement of [Ru(bpy)3 ]2+ -tri-n-propylamine electrochemiluminescence mediated by single gold nanoparticles and by small plasmonic clusters. In the future, the proposed characterization could be used for the rapid and in situ spectroscopic analysis of more complex plasmonic nanostructures and metasurfaces.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- Nanostructured Materials for Optoelectronics and Energy Harvesting (NANOPTO), Institute of Material science of Barcelona (ICMAB-CSIC), Universitat Autònoma de Barcelona, Carrer dels Til⋅lers, s/n, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
38
|
Chi C, Ni M, Ding XL, Yang DR, Li J, Xia XH. Distinguishing the contributions of hot holes from interband and intraband transitions to the photoenhanced electrocatalytic oxidation reaction of ethanol. Sci Bull (Beijing) 2023; 68:477-480. [PMID: 36792423 DOI: 10.1016/j.scib.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Affiliation(s)
- Chen Chi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Miao Ni
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dong-Rui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
39
|
Chang M, Wang M, Liu Y, Liu M, Kheraif AAA, Ma P, Zhao Y, Lin J. Dendritic Plasmonic CuPt Alloys for Closed-Loop Multimode Cancer Therapy with Remarkably Enhanced Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206423. [PMID: 36567272 DOI: 10.1002/smll.202206423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The outcome of laser-triggered plasmons-induced phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is significantly limited by the hypoxic tumor microenvironment and the upregulation of heat shock proteins (HSPs) in response to heat stress. Mitochondria, the biological battery of cells, can serve as an important breakthrough to overcome these obstacles. Herein, dendritic triangular pyramidal plasmonic CuPt alloys loaded with heat-sensitive NO donor N, N'-di-sec-butyl-N, N'-dinitroso-1,4-phenylenediamine (BNN) is developed. Under 808 nm laser irradiation, plasmonic CuPt can generate superoxide anion free radicals (·O2 - ) and heat simultaneously. The heat generated can then trigger the release of NO gas, which not only enables gas therapy but also damages the mitochondrial respiratory chain. Impaired mitochondrial respiration leads to reduced oxygen consumption and insufficient intracellular ATP supply, which effectively alleviates tumor hypoxia and undermines the synthesis of HSPs, in turn boosting plasmonic CuPt-based PDT and mild PTT. Additionally, the generated NO and ·O2 - can react to form more cytotoxic peroxynitrite (ONOO- ). This work describes a plasmonic CuPt@BNN (CPB) triggered closed-loop NO gas, free radicals, and mild photothermal therapy strategy that is highly effective at reciprocally promoting antitumor outcomes.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Man Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University, Changchun, 130021, P. R. China
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
40
|
Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomater 2023; 157:24-48. [PMID: 36584801 DOI: 10.1016/j.actbio.2022.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Translocation of extrinsic molecules into living cells is becoming increasingly crucial in biological studies ranging from cell engineering to biomedical applications. The concerns regarding biosafety and immunogenicity for conventional vectors and physical methods yet challenge effective intracellular delivery. Here, we begin with an overview of approaches for trans-membrane delivery up to now. These methods are featured with a relatively mature application but usually encounter low cell survival. Our review then proposes an advanced application for nanomaterial-sensitized photoporation triggered with a laser. We cover the mechanisms, procedures, and outcomes of photoporation-induced intracellular delivery with a highlight on its versatility to different living cells. We hope the review discussed here encourages researchers to further improvement and applications for photoporation-induced intracellular delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
41
|
Singh B, Patnaik C, Bahadur R, Gandhi M, De A, Srivastava R. Synthesis and degradation mechanism of renally excretable gold core-shell nanoparticles for combined photothermal and photodynamic therapy. NANOSCALE 2023; 15:1273-1288. [PMID: 36541678 DOI: 10.1039/d2nr05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) has emerged as a very potent therapeutic approach in the treatment of tumors. Gold nanoparticles have gained considerable scientific interest as a photosensitizer due to their absorbance in the near-infrared regions. However, their biodegradation and excretion from the body is a challenge. Various biodegradable systems consisting of liposomes and polymers have been synthesized, but their precise manufacturing and decomposition mechanisms have not yet been explored. Using zein nanoparticles as a template, we have fabricated a glutathione-functionalized gold core shell type of formulation. The scalability of the one-step seedless gold coating process is also reported. The synthesis procedure of these tunable nanoparticles is understood with TEM. The thermal degradation of the material under the physiological conditions is thoroughly examined using UV and TEM. In vitro PTT effectiveness on breast cancer cells is assessed after an extensive in vitro toxicity research. The mechanism of cell death is studied using ROS and cell cycle analysis. The material exhibited good efficacy as a PTT agent in mice and showed non-toxicity up to 14 days. The renal clearance study of the material in mice shows its disintegration into renal clearable minute gold seeds. All the findings suggest biodegradable glutathione-functionalized gold core-shell nanoparticles as potential photothermal cancer treatment agents.
Collapse
Affiliation(s)
- Barkha Singh
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Chetna Patnaik
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| |
Collapse
|
42
|
Chen H, Li X, Wang Y, Li Y, Yu Y, Li H, Shentu B. Rational Fabrication of Ag Nanocone Arrays Embedded with Ag NPs and Their Sensing Applications. ACS OMEGA 2022; 7:46769-46776. [PMID: 36570300 PMCID: PMC9773957 DOI: 10.1021/acsomega.2c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Colloidal lithography is used to design and construct a high-performance plasmonic sensor based on Ag nanocone arrays embedded with Ag NPs. The surface plasmon polariton (SPP) of the Ag nanocone array and the localized surface plasmon resonance (LSPR) of Ag NPs inside the nanocones can both couple incident photons. Sharp reflectance troughs are considerably enhanced by coupling the SPPs and LSPR, which is made possible by carefully tuning the nanocone sizes. To maximize the line shape and sensitivity, other geometric factors, such as the thickness of the silver layer and the size of the Ag NPs, are modified. Finite-difference time-domain computations confirm these hypotheses and experimental findings. We use well-researched solvents with various refractive indices as a model system to demonstrate good sensing performance as a proof of concept. The crystal used in this investigation has the ideal refractive index sensitivity, having 500 nm lattice constant, 350 nm nanocone height, and 350 nm base diameter (aspect ratio = 1). The Ag nanocone array embedded with Ag NPs is a good contender for a sensing platform due to its compact structure and efficient read-out apparatus.
Collapse
Affiliation(s)
- Hongxu Chen
- College
of Material and Textile Engineering, Jiaxing
University, Jiaxing 314001, China
- State
Key Lab of Chemical Engineering, Department of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang
Yuhua Timber Co., Ltd., Jiaxing 314101, China
| | - Xing Li
- Zhejiang
Yuhua Timber Co., Ltd., Jiaxing 314101, China
| | - Yu Wang
- College
of Material and Textile Engineering, Jiaxing
University, Jiaxing 314001, China
| | - Yan Li
- College
of Material and Textile Engineering, Jiaxing
University, Jiaxing 314001, China
| | - Yingfeng Yu
- College
of Material and Textile Engineering, Jiaxing
University, Jiaxing 314001, China
| | - Haidong Li
- College
of Material and Textile Engineering, Jiaxing
University, Jiaxing 314001, China
| | - Baoqing Shentu
- State
Key Lab of Chemical Engineering, Department of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Chen YF, Chang WR, Lee CJ, Chiu CW. Triangular gold nanoplates/two-dimensional nano mica platelets with a 3D lightning-rod effect as flexible nanohybrid substrates for SERS bacterial detection. J Mater Chem B 2022; 10:9974-9983. [PMID: 36398620 DOI: 10.1039/d2tb02049a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triangular gold nanoplates (TAuNPs) were prepared by a one-step rapid growth method and then reduced and stabilized on two-dimensional nano mica nanoplatelets (NMPs). We also prepared TAuNP/NMP nanohybrids with a three-dimensional lightning-rod effect by oxidative etching. The surface of the delaminated NMPs (only 1 nm thick) is highly charged and can provide a large specific surface area; thus, it can be used as a substrate for the stable growth of gold nanoplates. In addition, by controlling relevant synthesis parameters, the edge length of the TAuNPs can be easily adjusted in the range of 30-90 nm. During reduction of the TAuNPs, the cationic surfactant cetyltrimethylammonium chloride was added as a protective agent to surround the TAuNPs; consequently, the surface was positively charged, which facilitates adsorption for detecting molecules with negative charges. When nanohybrids were used in surface-enhanced Raman spectroscopy (SERS) to detect adenine molecules, the limit of detection concentration was 10-9 M. The Raman enhancement factor was 5.7 × 107, and the relative standard deviation (RSD) was 9.8%. Finally, this method was applied to the biological detection of Staphylococcus aureus, and the surface charge and hydrophilic properties of the material significantly improved the SERS signal of S. aureus. The limit of detection concentration was 102 CFU mL-1, and the RSD was 11.2%. The TAuNP/NMP nanohybrids can provide very rapid and sensitive SERS detection of biomolecules.
Collapse
Affiliation(s)
- Yan-Feng Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Wen-Ru Chang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
44
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
45
|
Huang X, He ZL, Chen Y, Xu Q, Zhu M, Zhai C. Self-standing three-dimensional PdAu nanoflowers for plasma-enhanced photo-electrocatalytic methanol oxidation with a CO-free dominant mechanism. J Colloid Interface Sci 2022; 625:850-858. [DOI: 10.1016/j.jcis.2022.06.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
|
46
|
Tamtaji M, Guo X, Tyagi A, Galligan PR, Liu Z, Roxas A, Liu H, Cai Y, Wong H, Zeng L, Xie J, Du Y, Hu Z, Lu D, Goddard WA, Zhu Y, Luo Z. Machine Learning-Aided Design of Gold Core-Shell Nanocatalysts toward Enhanced and Selective Photooxygenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46471-46480. [PMID: 36197146 DOI: 10.1021/acsami.2c11101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrate the use of the machine learning (ML) tools to rapidly and accurately predict the electric field as a guide for designing core-shell Au-silica nanoparticles to enhance 1O2 sensitization and selectivity of organic synthesis. Based on the feature importance analysis, obtained from a deep neural network algorithm, we found a general and linear dependent descriptor (θ ∝ aD0.25t-1, where a, D, and t are the shape constant, size of metal nanoparticles, and distance from the metal surface) for the electric field around the core-shell plasmonic nanoparticle. Directed by the new descriptor, we synthesized gold-silica nanoparticles and validated their plasmonic intensity using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) mapping. The nanoparticles with θ = 0.40 demonstrate an ∼3-fold increase in the reaction rate of photooxygenation of anthracene and 4% increase in the selectivity of photooxygenation of dihydroartemisinic acid (DHAA), a long-standing goal in organic synthesis. In addition, the combination of ML and experimental investigations shows the synergetic effect of plasmonic enhancement and fluorescence quenching, leading to enhancement for 1O2 generation. Our results from time-dependent density functional theory (TD-DFT) calculations suggest that the presence of an electric field can favor intersystem crossing (ISC) of methylene blue to enhance 1O2 generation. The strategy reported here provides a data-driven catalyst preparation method that can significantly reduce experimental cost while paving the way for designing photocatalysts for organic drug synthesis.
Collapse
Affiliation(s)
- Mohsen Tamtaji
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Abhishek Tyagi
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Patrick Ryan Galligan
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Alexander Roxas
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Yuting Cai
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| | - Lun Zeng
- Guangzhou Baiyun Medical Adhesive Co. Ltd., Guangzhou, Guangdong510405, P. R. China
| | - Jianbo Xie
- Guangzhou Baiyun Medical Adhesive Co. Ltd., Guangzhou, Guangdong510405, P. R. China
| | - Yucong Du
- Guangzhou Baiyun Medical Adhesive Co. Ltd., Guangzhou, Guangdong510405, P. R. China
| | - Zhigang Hu
- Silver Age Engineering Plastics (Dongguan) Co. Ltd., Dongguan, Guangdong523187, P. R. China
| | - Dong Lu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong511458, P. R. China
| | - William A Goddard
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California91125, United States
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, P. R. China
| |
Collapse
|
47
|
High-Density Gold Nanoparticles Implanted on Mg/Fe LDH Nanoflowers Assisted Lateral Flow Immuno-Dipstick Assay for Visual Detection of Human Epididymal Protein 4. BIOSENSORS 2022; 12:bios12100797. [PMID: 36290937 PMCID: PMC9599355 DOI: 10.3390/bios12100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022]
Abstract
The timelier and more accurate the diagnosis of the disease, the higher the patient’s survival rate. Human epididymal protein 4 (HE4) has great significance as a biomarker of concern for reflecting ovarian cancer. Herein, we prepared a novel optical label that can be used in lateral-flow immuno-dipstick assay (LFIA) for sensitive visual detection of HE4 by implanting hydrophobic gold nanoparticles (Au NPs) at high density in Mg/Fe LDH nanoflowers (MF NFs). MF NFs with large specific surface area, high porosity, abundant active binding sites, and stable structure were employed for the first time as templates to directly anchor Au NPs in the organic phase. After simple modification with an optimized amount of branched polyethyleneimine, not only could MF@Au NFs be dispersed in the aqueous phase, but also amino functional groups were introduced on its surface to facilitate subsequent antibody coupling steps. The limit of detection reaches 50 pM with a detection range of 50 to 1000 pM. This work initially explored how MF NFs can be used to load signal labels with ideal stability and signal amplification capabilities, which greatly improves the practicability of LFIA and highlights its important role in the field of rapid diagnostics.
Collapse
|
48
|
Huang Y, Fu R, Zhu Z, Liu C, Liu S, Yu P, Yan L, Zhou Z, Ning C, Wang Z. Plasmon-Enhanced Electrocatalysis of Conductive Polymer-Based Nano-Heterojunction for Small Molecule Metabolites Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39799-39807. [PMID: 36018044 DOI: 10.1021/acsami.2c09789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive polymers are promising electrode candidates in the nonenzymatic catalytic detection of small molecule metabolites, due to the tunable electronic conductivity and versatile modifiability. However, the complex catalytic reaction pathway of conductive polymers results in lower detection sensitivity and a narrower linear range compared with clinical metal-based and carbon-based electrodes. Localized surface plasmon resonance (LSPR), characterized by deep strong light-matter coupling, has great potential in driving surface catalytic reactions at an ultrafast rate. Here, we constructed a salix argyracea-like polypyrrole nanowires/silver nanoparticles (PPy/AgNPs) heterojunction electrode using polydopamine as a dopant and chelator. Through cyclic voltammetry, the Mott-Schottky curve, and COMSOL simulation, we demonstrated that the LSPR-excited photocarriers enhanced PPy/AgNPs electrode electrocatalysis. Thus, the detection current response and linear range were significantly improved under the LSPR excitation when taking glucose and hydrogen peroxide as models of small molecule metabolites. Furthermore, we discussed the LSPR-enhanced detection mechanism of PPy/AgNPs electrode from the aspects of the Tafel slope, the apparent electron diffusion coefficient, and the charge transfer resistance. This strategy opens a new avenue toward the design of LSPR-enhanced conductive polymer electrodes.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rumin Fu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zurong Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chengli Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Senwei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Peng Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Ling Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
- Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
49
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Zhao J, Wang J, Brock AJ, Zhu H. Plasmonic heterogeneous catalysis for organic transformations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|