1
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
2
|
Izu H, Tabe H, Namiki Y, Yamada H, Horike S. Heterogenous CO 2 Reduction Photocatalysis of Transparent Coordination Polymer Glass Membranes Containing Metalloporphyrins. Inorg Chem 2023. [PMID: 37432910 DOI: 10.1021/acs.inorgchem.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Transparent and grain boundary-free substrates are essential to immobilize molecular photocatalysts for efficient photoirradiation reactions without unexpected light scattering and absorption by the substrates. Herein, membranes of coordination polymer glass immobilizing metalloporphyrins were examined as a heterogeneous photocatalyst for carbon dioxide (CO2) reduction under visible-light irradiation. [Zn(HPO4)(H2PO4)2](ImH2)2 (Im = imidazolate) liquid containing iron(III) 5,10,15,20-tetraphenyl-21H,23H-porphine chloride (Fe(TPP)Cl, 0.1-0.5 w/w%) was cast on a borosilicate glass substrate, followed by cooling to room temperature, resulting in transparent and grain boundary-free membranes with the thicknesses of 3, 5, and 9 μm. The photocatalytic activity of the membranes was in proportion to the membrane thickness, indicating that Fe(TPP)Cl in the subsurface of membranes effectively absorbed light and contributed to the reactions. The membrane photocatalysts were intact during the photocatalytic reaction and showed no recrystallization or leaching of Fe(TPP)Cl.
Collapse
Affiliation(s)
- Hitoshi Izu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Namiki
- Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Cao G, Ye X, Duan S, Cao Z, Zhang C, Yao C, Li X. Plasmon enhanced Sn:In2O3/attapulgite S-scheme heterojunction for efficient photothermal reduction of CO2. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Photothermal Catalytic Reduction of CO2 by Cobalt Silicate Heterojunction Constructed from Clay Minerals. Catalysts 2022. [DOI: 10.3390/catal13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The coupled utilization of solar and thermal energy is considered an efficient way to improve the efficiency of CO2 reduction. Herein, palygorskite (Pal) clay is as a silicon source, while Co2+ is introduced to prepare two-dimensional Co2SiO4 nanosheets, and the excess of Co2+ leads to the growth of Co3O4 on the surface of Co2SiO4 to obtain an S-scheme Co2SiO4/Co3O4−x heterojunction, which facilitates the charge transfer and maintains higher redox potentials. Benefiting from black color and a narrow band gap, the cobalt oxide on the surface can increase the light absorption and produce a local photothermal effect. Under proper thermal activation conditions, the photoelectrons captured by the abundant oxygen vacancies can obtain a secondary leap to the semiconductor conduction band (CB), suppressing the recombination of electron-hole pairs, thus favoring the electron transfer on Co2SiO4/Co3O4−x. The composites not only have abundant oxygen vacancies, but also have a large specific surface area for the adsorption and activation of CO2. The yields of CH3OH on Co2SiO4/Co3O4−5% reach as high as 48.9 μmol·g−1·h−1 under simulated sunlight irradiation. In situ DRIFTS is used to explore the photocatalytic reduction CO2 mechanism. It is found that the thermal effect facilitates the generation of the key intermediate COOH* species. This work provides a new strategy for photothermal catalytic CO2 reduction by taking advantage of natural clay and solar energy.
Collapse
|
5
|
Wang J, Guo RT, Bi ZX, Chen X, Hu X, Pan WG. A review on TiO 2-x-based materials for photocatalytic CO 2 reduction. NANOSCALE 2022; 14:11512-11528. [PMID: 35917276 DOI: 10.1039/d2nr02527b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic CO2 reduction technology has a broad potential for dealing with the issues of energy shortage and global warming. As a widely studied material used in the photocatalytic process, titanium dioxide (TiO2) has been continuously modified and tailored for more desirable application. Recently, the defective/reduced titanium dioxide (TiO2-x) catalyst has attracted broad attention due to its excellent photocatalytic performance for CO2 reduction. In this perspective review, we comprehensively present the recent progress in TiO2-x-based materials for photocatalytic CO2 reduction. In detail, the review starts with the fundamentals of CO2 photocatalytic reduction. Then, the synthesis of a defective TiO2 structure is introduced for the regulation of its photocatalytic performance, especially its optical properties and dissociative adsorption properties. In addition, the current application of TiO2-x-based photocatalysts for CO2 reduction is also highlighted, such as metal-TiO2-x, oxide-TiO2-x and TiO2-x-carbon-based photocatalysts. Finally, the existing challenges and possible scope of photocatalytic CO2 reduction over TiO2-x-based materials are discussed. We hope that this review can provide an effective reference for the development of more efficient and reasonable photocatalysts based on TiO2-x.
Collapse
Affiliation(s)
- Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|