1
|
Jäckering A, van der Kamp M, Strodel B, Zinovjev K. Influence of Wobbling Tryptophan and Mutations on PET Degradation Explored by QM/MM Free Energy Calculations. J Chem Inf Model 2024; 64:7544-7554. [PMID: 39344272 PMCID: PMC11480989 DOI: 10.1021/acs.jcim.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Plastic-degrading enzymes, particularly poly(ethylene terephthalate) (PET) hydrolases, have garnered significant attention in recent years as potential eco-friendly solutions for recycling plastic waste. However, understanding of their PET-degrading activity and influencing factors remains incomplete, impeding the development of uniform approaches for enhancing PET hydrolases for industrial applications. A key aspect of PET hydrolase engineering is optimizing the PET-hydrolysis reaction by lowering the associated free energy barrier. However, inconsistent findings have complicated these efforts. Therefore, our goal is to elucidate various aspects of enzymatic PET degradation by means of quantum mechanics/molecular mechanics (QM/MM) reaction simulations and analysis, focusing on the initial reaction step, acylation, in two thermophilic PET hydrolases, LCC and PES-H1, along with their highly active variants, LCCIG and PES-H1FY. Our findings highlight the impact of semiempirical QM methods on proton transfer energies, affecting the distinction between a two-step reaction involving a metastable tetrahedral intermediate and a one-step reaction. Moreover, we uncovered a concerted conformational change involving the orientation of the PET benzene ring, altering its interaction with the side-chain of the "wobbling" tryptophan from T-stacking to parallel π-π interactions, a phenomenon overlooked in prior research. Our study thus enhances the understanding of the acylation mechanism of PET hydrolases, in particular by characterizing it for the first time for the promising PES-H1FY using QM/MM simulations. It also provides insights into selecting a suitable QM method and a reaction coordinate, valuable for future studies on PET degradation processes.
Collapse
Affiliation(s)
- Anna Jäckering
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Marc van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Kirill Zinovjev
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| |
Collapse
|
2
|
Peixoto VP, Prudêncio C, Vieira M, Sousa SF. Evaluation of the impact of two C5 genetic variants on C5-eculizumab complex stability at the molecular level. J Biomol Struct Dyn 2024:1-10. [PMID: 38529903 DOI: 10.1080/07391102.2024.2331091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Complement C5 is the target of the monoclonal antibody eculizumab, used in complement dysregulating disorders, like the rare disease Paroxysmal Nocturnal Hemoglobinuria (PNH). PNH is an acquired hematopoietic stem cell condition characterized by aberrant destruction of erythrocytes, chronic hemolytic anemia, and thromboembolism propensity. C5 is a protein component of the complement system which is part of the immune system of the body and plays a prominent role in the destruction of red blood cells, misidentifying them as a threat. This work describes the application of molecular dynamics simulations to the study of the underlying interactions between complement C5 and eculizumab. This study also reveals the importance of single nucleotide polymorphisms on C5 protein concerning the effective inhibition of the mAB, involving the mechanistic events taking place at the interface spots of the complex. The predicted conformational change in the C5 Arg885/His/Cys mutation has implications on the protein's interaction with eculizumab, compromising their compatibility. The acquired insights into the conformational changes, dynamics, flexibility, and interactions shed light on the knowledge of the function of this biomolecule providing answers about the poor response to the treatment in PNH patient carriers of the mutations. By investigating the intricate dynamics, significant connections between C5 and eculizumab can be uncovered. Such insights may aid in the creation of novel compounds or lead to the enhancement of eculizumab's efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vanda P Peixoto
- Chemical and Biomolecular Sciences, School of Health, Polytechnic Institute of Porto, Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO), Polytechnic Institute of Porto, Porto, Portugal
- LAQV/REQUIMTE, BioSIM - Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Cristina Prudêncio
- Chemical and Biomolecular Sciences, School of Health, Polytechnic Institute of Porto, Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO), Polytechnic Institute of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Mónica Vieira
- Chemical and Biomolecular Sciences, School of Health, Polytechnic Institute of Porto, Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO), Polytechnic Institute of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM - Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Malunavicius V, Padaiga A, Stankeviciute J, Pakalniskis A, Gudiukaite R. Engineered Geobacillus lipolytic enzymes - Attractive polyesterases that degrade polycaprolactones and simultaneously produce esters. Int J Biol Macromol 2023; 253:127656. [PMID: 37884253 DOI: 10.1016/j.ijbiomac.2023.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Plastic pollution is one of the biggest environmental problems plaguing the modern world. Polyester-based plastics contribute significantly to this ecological safety concern. In this study, lipolytic biocatalysts GD-95RM and GDEst-lip developed based on lipase/esterase produced by Geobacillus sp. 95 strain were applied for the degradation of polycaprolactone films (Mn 45.000 (PCL45000) and Mn 80.000 (PCL80000)). The degradation efficiency was significantly enhanced by the addition of short chain alcohols. Lipase GD-95RM (1 mg) can depolymerize 264.0 mg and 280.7 mg of PCL45000 and PCL80000, films respectively, in a 24 h period at 30 °C, while the fused enzyme GDEst-lip (1 mg) is capable of degrading 145.5 mg PCL45000 and 134.0 mg of PCL80000 films in 24 h. The addition of ethanol (25 %) improves the degradation efficiency ~2.5 fold in the case of GD-95RM. In the case of GDEst-lip, 50 % methanol was found to be the optimal alcohol solution and the degradation efficiency was increased by ~3.25 times. The addition of alcohols not only increased degradation speeds but also allowed for simultaneous synthesis of industrially valuable 6-hydroxyhexonic acid esters. The suggested system is an attractive approach for removing of plastic waste and supports the principles of bioeconomics.
Collapse
Affiliation(s)
- Vilius Malunavicius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Antanas Padaiga
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Jonita Stankeviciute
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Andrius Pakalniskis
- Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Renata Gudiukaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
4
|
Crnjar A, Griñen A, Kamerlin SCL, Ramírez-Sarmiento CA. Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation. ACS ORGANIC & INORGANIC AU 2023; 3:109-119. [PMID: 37035283 PMCID: PMC10080609 DOI: 10.1021/acsorginorgau.2c00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 04/12/2023]
Abstract
Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from Ideonella sakaiensis (IsPETase) having optimal catalytic activity at 30-35 °C. Crystal structures of IsPETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to IsPETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease T opt. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of IsPETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in IsPETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in IsPETase.
Collapse
Affiliation(s)
- Alessandro Crnjar
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Aransa Griñen
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- ANID—Millennium
Science Initiative Program—Millennium Institute for Integrative
Biology (iBio), Av. Libertador
Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Shina C. L. Kamerlin
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic
Drive NW, Atlanta, Georgia 30332-0400, United
States
| | - César A. Ramírez-Sarmiento
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- ANID—Millennium
Science Initiative Program—Millennium Institute for Integrative
Biology (iBio), Av. Libertador
Bernardo O’Higgins 340, Santiago 8331150, Chile
| |
Collapse
|
5
|
Joho Y, Vongsouthi V, Spence MA, Ton J, Gomez C, Tan LL, Kaczmarski JA, Caputo AT, Royan S, Jackson CJ, Ardevol A. Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Ideonella sakaiensis PETase and Variants with Improved Stability and Activity. Biochemistry 2023; 62:437-450. [PMID: 35951410 DOI: 10.1021/acs.biochem.2c00323] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The improved production, recycling, and removal of plastic waste, such as polyethylene terephthalate (PET), are pressing environmental and economic issues for society. Biocatalytic (enzymatic) PET depolymerization is potentially a sustainable, low-energy solution to PET recycling, especially when compared with current disposal methods such as landfills, incineration, or gasification. IsPETase has been extensively studied for its use in PET depolymerization; however, its evolution from cutinases is not fully understood, and most engineering studies have neglected the majority of the available sequence space remote from the active site. In this study, ancestral protein reconstruction (ASR) has been used to trace the evolutionary trajectory from ancient serine hydrolases to IsPETase, while ASR and the related design approach, protein repair one-stop shop, were used to identify enzyme variants with improved activity and stability. Kinetic and structural characterization of these variants reveals new insights into the evolution of PETase activity and the role of second-shell mutations around the active site. Among the designed and reconstructed variants, we identified several with melting points 20 °C higher than that of IsPETase and two variants with significantly higher catalytic activity.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia.,Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jennifer Ton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chloe Gomez
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Li Lynn Tan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Alessandro T Caputo
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia
| | - Santana Royan
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|