1
|
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem 2024; 416:5893-5914. [PMID: 38488951 DOI: 10.1007/s00216-024-05240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the "true" and "false" values of the logic gates, and their outputs correspond to "l" and "0" of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers' subsequent studies.
Collapse
Affiliation(s)
- Xiangru Hou
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Road, Hohhot, 010051, China.
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
2
|
Yang QQ, He SB, Zhang YL, Li M, You XH, Xiao BW, Yang L, Yang ZQ, Deng HH, Chen W. A colorimetric sensing strategy based on chitosan-stabilized platinum nanoparticles for quick detection of α-glucosidase activity and inhibitor screening. Anal Bioanal Chem 2024; 416:6001-6010. [PMID: 38358531 DOI: 10.1007/s00216-024-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.
Collapse
Affiliation(s)
- Qin-Qin Yang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yi-Lin Zhang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Min Li
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Hua You
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo-Wen Xiao
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Qiang Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
3
|
Liu F, Li Z, Kang G, Liu Z, Zhu S, He R, Zhang C, Chen C, Lu Y. Ratiometric sensing of α-glucosidase and its inhibitor based on MnO2 nanosheets promoted in-situ fluorescent reactions. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Yao C, Zhang G, Guan Y, Yang T, Hu R, Yang Y. Modulation of inner filter effect between persistent luminescent particles and 2, 3-diaminophenazine for ratiometric fluorescent assay of ascorbic acid and ascorbate oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121564. [PMID: 35797885 DOI: 10.1016/j.saa.2022.121564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ascorbate oxidase (AAO) and ascorbic acid (AA) play an important role in delaying lives senescence and metabolism. In this study, a sensitive ratiometric fluorescence sensing system based on the inner filter effect (IFE) between persistent luminescent particles (PLPs) and 2, 3-diaminophenazine (DAP), was designed for the detection of AA and AAO activity. Wherein, PLPs emit blue fluorescence at 475 nm with an excitation wavelength of 370 nm. CoOOH nanosheets with oxidase-like activity can oxidize o-phenylenediamine (OPD) to produce 2, 3-diaminophenazine (DAP) with orange fluorescence at 558 nm. The generated DAP quenched the fluorescence of PLPs by an inner filter effect (IFE). When AA was introduced to the system, CoOOH nanosheets were destroyed and reduced to Co2+, thereby inhibiting the oxidization of OPD and effectively preserving the blue fluorescence of PLPs at 475 nm. Besides, AAO can catalyse AA to produce the oxided dehydroascorbic acid (DHA). The dissipative AA can recover orange fluorescence of DAP with weakening the blue fluorescence of PLPs. Therefore, a sensitive ratio fluorescence sensing strategy was established by using PLPs as the reference signal and DAP as a reported signal for the detection of AA and AAO activity. Under optimal conditions, the obtained linear ranges were 1-45 μM and 1-20 mU/mL, and detection limits were 0.2 μM and 0.25 mU/mL, respectively. Finally, this proposed ratiometric fluorescent analytical strategy was used to detect AA in real samples (lemon, orange, tomato), which exhibited satisfactory results comparing with commercial kit.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Guiqun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China.
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| |
Collapse
|
5
|
Ye H, Liu B, Wang J, Zhou C, Xiong Z, Zhao L. A Hydrothermal Method to Generate Carbon Quantum Dots from Waste Bones and Their Detection of Laundry Powder. Molecules 2022; 27:molecules27196479. [PMID: 36235015 PMCID: PMC9571562 DOI: 10.3390/molecules27196479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Surfactants are one of the major pollutants in laundry powder, which have an impact on the environment and human health. Carbon quantum dots (CQDs) are spherical zero-dimensional fluorescent nanoparticles with great potential for fluorescent probing, electrochemical biosensing and ion sensing. Herein, a bottom-up approach was developed for the synthesis of CQDs from biomass to detect laundry detergent and laundry powder. Waste chicken bones were used as carbon precursors after being dried, crushed and reacted with pure water at 180 °C for 4 h to generate CQDs, which exhibited a monodisperse quasi-spherical structure with an average particle size of 3.2 ± 0.2 nm. Functional groups, including -OH, C=O, C=C and C-O, were identified on the surface of the prepared CQDs. The optimal fluorescence excitation wavelength of the yellow-brown CQDs was 380 nm, with a corresponding emission peak at 465 nm. CQDs did not significantly increase cell death in multiple cell lines at concentrations of 200 µg·mL−1. Fluorescence enhancement of CQDs was observed after addition of sodium dodecyl benzene sulphonate, a major anionic surfactant in laundry powder. A linear relationship between fluorescence enhancement CQDs and the concentration of laundry powder was established. Thus, a hydrothermal method was developed to generate CQDs from waste biomass that may be used as a fluorescent probe to detect laundry powder.
Collapse
Affiliation(s)
- Heng Ye
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen 361015, China
| | - Jin Wang
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama 700-8530, Japan
| | - Chunyu Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, China
- Correspondence: (Z.X.); (L.Z.)
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, China
- Correspondence: (Z.X.); (L.Z.)
| |
Collapse
|
6
|
Ratiometric fluorescence sensing with logical operation: Theory, design and applications. Biosens Bioelectron 2022; 213:114456. [PMID: 35691083 DOI: 10.1016/j.bios.2022.114456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/14/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
The construction of ratiometric fluorescence sensing logic systems has gradually become a hot topic in fluorescence analysis, due to the multi-target analysis potential of logic operations and the high specificity and selectivity of ratiometric fluorescence sensing. In this paper, the basic principles of various logic functions implemented in ratiometric fluorescence detection are discussed in the context of sensing mechanisms, and the strategies for constructing logic systems in different ratiometric fluorescence sensing application areas are summarized. Although there are limitations such as cumbersome operations and complicated experiments, ratiometric fluorescence sensing logic circuits that combine the visualization of logic operations and the accuracy of ratiometric fluorescence are still worthy of in-depth study. This review may be useful for researchers interested in the construction of logic operations based on ratiometric fluorescence sensing applications.
Collapse
|
7
|
Bai F, Wang H, Lin L, Zhao L. A ratiometric fluorescence platform composed of MnO 2 nanosheets and nitrogen, chlorine co-doped carbon dots and its logic gate performance for glutathione determination. NEW J CHEM 2022. [DOI: 10.1039/d1nj05210a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of the principle of a dual-emission ratiometric fluorescence strategy for the selective detection of GSH based on an N, Cl-CD-assisted MnO2 nanosheet–OPD system.
Collapse
Affiliation(s)
- Fujuan Bai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Longyi Lin
- Faculty of Life Science and Biopharmaceutics Life Science and Technology Base Class, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| |
Collapse
|