1
|
Mohan S, Rissanen K, Ward JS. Iodine(I) pnictogenate complexes as Iodination reagents. Commun Chem 2024; 7:159. [PMID: 39020074 PMCID: PMC11255316 DOI: 10.1038/s42004-024-01240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Halogen(I) complexes are widely used as halogenation reagents and traditionally feature homoleptic stabilising Lewis bases, though the recent revitalisation of iodine(I) carboxylate chemistry has provided isolable examples of heteroleptic iodine(I) complexes. This work reports iodine(I) pnictogenate complexes stabilised by a Lewis base (L), Ph2P(O)O─I─L, synthesised via cation exchange from the silver(I) precursor, (Ph2P(O)OAg)n. The complexes were characterised in both solution (1H, 1H-15N HMBC, 31P) and the solid state, and supplemented computationally by DFT studies. Interestingly, these iodine(I) pnictogenates demonstrate a range of stabilities, and have been found to excel as iodination reagents in comparison to carbonyl hypoiodites, with comparable reactivity to the eponymous Barluenga's reagent in the iodination of antipyrine.
Collapse
Affiliation(s)
- Sharath Mohan
- Department of Chemistry, University of Jyvaskyla, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, 40014, Jyväskylä, Finland
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, 40014, Jyväskylä, Finland.
| |
Collapse
|
2
|
Kumar P, Rautiainen JM, Novotný J, Ward JS, Marek R, Rissanen K, Puttreddy R. The Impact of ortho-substituents on Bonding in Silver(I) and Halogen(I) Complexes of 2-Mono- and 2,6-Disubstituted Pyridines: An In-Depth Experimental and Theoretical Study. Chemistry 2023:e202303643. [PMID: 38055221 DOI: 10.1002/chem.202303643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The coordination nature of 2-mono- and 2,6-disubstituted pyridines with electron-withdrawing halogen and electron-donating methyl groups for [N-X-N]+ (X=I, Br) complexations have been studied using 15 N NMR, X-ray crystallography, and Density Functional Theory (DFT) calculations. The 15 N NMR chemical shifts reveal iodine(I) and bromine(I) prefer to form complexes with 2-substituted pyridines and only 2,6-dimethylpyridine. The crystalline halogen(I) complexes of 2-substituted pyridines were characterized by using X-ray diffraction analysis, but 2,6-dihalopyridines were unable to form stable crystalline halogen(I) complexes due to the lower nucleophilicity of the pyridinic nitrogen. In contrast, the halogen(I) complexes of 2,6-dimethylpyridine, which has a more basic nitrogen, are characterized by X-crystallography, which complements the 15 N NMR studies. DFT calculations reveal that the bond energies for iodine(I) complexes vary between -291 and -351 kJ mol-1 and for bromine between -370 and -427 kJ mol-1 . The bond energies of halogen(I) complexes of 2-halopyridines with more nucleophilic nitrogen are 66-76 kJ mol-1 larger than those of analogous 2,6-dihalopyridines with less nucleophilic nitrogen. The experimental and DFT results show that the electronic influence of ortho-halogen substituents on pyridinic nitrogen leads to a completely different preference for the coordination bonding of halogen(I) ions, providing new insights into bonding in halogen(I) chemistry.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - J Mikko Rautiainen
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - Jan Novotný
- Department of Chemistry, Faculty of Science, Masaryk university, Kamenice 5, 62500, Brno, Czechia
| | - Jas S Ward
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - Radek Marek
- Department of Chemistry, Faculty of Science, Masaryk university, Kamenice 5, 62500, Brno, Czechia
| | - Kari Rissanen
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - Rakesh Puttreddy
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| |
Collapse
|
3
|
Adeniyi E, Odubo FE, Zeller M, Torubaev YV, Rosokha SV. Halogen Bonding and/or Covalent Bond: Analogy of 3c-4e N···I···X (X = Cl, Br, I, and N) Interactions in Neutral, Cationic, and Anionic Complexes. Inorg Chem 2023; 62:18239-18247. [PMID: 37870922 DOI: 10.1021/acs.inorgchem.3c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
X-ray structural measurements and computational analysis demonstrated the similarity of the geometries and electronic structures of the X-I···N (X = Cl, Br, I, and N) bonding in strong halogen-bonded (HaB) complexes and in the anionic or cationic halonium ions. In particular, I···N bond lengths in the solid-state associations formed by strong HaB donors (e.g., I2, IBr, ICl, and N-iodosuccinimide) and acceptors (e.g., quinuclidine or pyridines) were in the same range of 2.3 ± 0.1 Å as those in the halonium ions [e.g., the bis(quinuclidine)iodonium cation or the 1,1'-iodanylbis(pyrrolidine-2,5-dione) anion]. In all cases, bond lengths were much closer to those of the N-I covalent bond than to the van der Waals separations of these atoms. The strong N···I bonding in the HaB complexes led to a substantial charge transfer, lengthening and weakening of the I···X bonds, and polarization of the HaB donors. As a result, the central iodine atoms in the strong HaB complexes bear partial positive charges akin to those in the halonium ions. The energies and Mayer bond orders for both N···I and I···X bonds in such associations are also comparable to those in the halonium ions. The similarity of the bonding in such complexes and in halonium ions was further supported by the analysis of electron densities and energies at bond critical (3, -1) points in the framework of the quantum theory of atoms in molecules and by the density overlap region indicator. Overall, all these data point out the analogy of the symmetric N···I···N bonding in the halonium ions and the asymmetric X···I···N bonding in the strong HaB complexes, as well as the weakly covalent character of these 3c-4e interactions.
Collapse
Affiliation(s)
- Emmanuel Adeniyi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Favour E Odubo
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yury V Torubaev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sergiy V Rosokha
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
4
|
Kumar P, Komulainen J, Frontera A, Ward JS, Schalley C, Rissanen K, Puttreddy R. Linear bis-Coordinate Silver(I) and Iodine(I) Complexes with R 3 R 2 R 1 N Tertiary Amines. Chemistry 2023:e202302162. [PMID: 37682579 DOI: 10.1002/chem.202302162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Homoleptic [L-I-L]+ iodine(I) complexes (where L is a R3 R2 R1 N tertiary amine) were synthesized via the [L-Ag-L]+ → [L-I-L]+ cation exchange reaction. In solution, the amines form [R3 R2 R1 N-Ag-NR1 R2 R3 ]+ silver(I) complexes, which crystallize out from solution as the meso-[L-Ag-L]+ complexes, as characterized by X-ray crystallography. The subsequent [L-I-L]+ iodine(I) analogues were extremely reactive and could not be isolated in the solid state. Density functional theory (DFT) calculations were performed to study the Ag+ -N and I+ -N interaction energies in silver(I) and iodine(I) complexes, with the former ranging from -80 to -100 kJ mol-1 and latter from -260 to -279 kJ mol-1 . The X-ray crystal structures revealed Ag+ ⋅⋅⋅Cπ and Ag+ ⋅⋅⋅H-C short contacts between the silver(I) cation and flexible N-alkyl/N-aryl groups, which are the first of their kind in such precursor complexes.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Joonas Komulainen
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - Jas S Ward
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Christoph Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Kari Rissanen
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Rakesh Puttreddy
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
5
|
Rissanen K, Ward JS. Iodine(I) and Silver(I) Complexes Incorporating 3-Substituted Pyridines. ACS OMEGA 2023; 8:24064-24071. [PMID: 37426204 PMCID: PMC10324066 DOI: 10.1021/acsomega.3c03097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Building upon the first report of a 3-acetaminopyridine-based iodine(I) complex (1b) and its unexpected reactivity toward tBuOMe, several new 3-substituted iodine(I) complexes (2b-5b) have been synthesized. The iodine(I) complexes were synthesized from their analogous silver(I) complexes (2a-5a) via a silver(I) to iodine(I) cation exchange reaction, incorporating functionally related substituents as 3-acetaminopyridine in 1b; 3-acetylpyridine (3-Acpy; 2), 3-aminopyridine (3-NH2py; 3), and 3-dimethylaminopyridine (3-NMe2py; 4), as well as the strongly electron-withdrawing 3-cyanopyridine (3-CNpy; 5), to probe the possible limitations of iodine(I) complex formation. The individual properties of these rare examples of iodine(I) complexes incorporating 3-substituted pyridines are also compared to each other and contrasted to their 4-substituted counterparts which are more prevalent in the literature. While the reactivity of 1b toward etheric solvents could not be reproduced in any of the functionally related analogues synthesized herein, the reactivity of 1b was further expanded to a second etheric solvent. Reaction of bis(3-acetaminopyridine)iodine(I) (1b) and iPr2O gave [3-acetamido-1-(3-iodo-2-methylpentan-2-yl)pyridin-1-ium]PF6 (1d), which demonstrated potentially useful C-C and C-I bond formation under ambient conditions.
Collapse
|
6
|
Ward JS, Sievänen EI, Rissanen K. Solid-state NMR Spectroscopy of Iodine(I) Complexes. Chem Asian J 2023; 18:e202201203. [PMID: 36734201 DOI: 10.1002/asia.202201203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Solid-state NMR has been applied to a series of Barluenga-type iodine(I) [L-I-L]PF6 (L=pyridine, 4-ethylpyridine, 4-dimethylaminopyridine, isoquinoline) complexes as their hexafluorophosphate salts, as well as their respective non-liquid ligands (L), their precursor silver(I) complexes, and the respective N-methylated pyridinium and quinolinium hexafluorophoshate salts. These results are compared and contrasted to the corresponding solution studies and single-crystal X-ray structures. As the first study of its kind on the solid-state NMR behavior of halogen(I) complexes, practical considerations are also discussed to encourage wider utilization of this technique in the future.
Collapse
Affiliation(s)
- Jas S Ward
- University of Jyvaskyla, Department of Chemistry, Jyväskylä, 40014, Finland
| | - Elina I Sievänen
- University of Jyvaskyla, Department of Chemistry, Jyväskylä, 40014, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Jyväskylä, 40014, Finland
| |
Collapse
|
7
|
Ward JS, Gomila RM, Frontera A, Rissanen K. Iodine(i) complexes incorporating sterically bulky 2-substituted pyridines. RSC Adv 2022; 12:8674-8682. [PMID: 35424827 PMCID: PMC8984907 DOI: 10.1039/d2ra01390h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
The silver(i) and iodine(i) complexes of the 2-substituted pyridines 2-(diphenylmethyl)pyridine (1) and 2-(1,1-diphenylethyl)pyridine (2), along with their potential protonated side products, were synthesised to investigate the steric limitations of iodine(i) complex formation. The complexes were characterised by 1H and 1H–15N HMBC NMR, X-ray crystallography, and DFT calculations. The solid-state structures for the silver(i) and iodine(i) complexes were extensively compared to the literature and analysed by DFT to examine the influence of the sterically bulky pyridines and their anions. The silver(i) and iodine(i) complexes of two sterically bulky 2-substituted pyridines, along with their potential protonated side products, were synthesised to investigate the steric limitations of iodine(i) ion formation.![]()
Collapse
Affiliation(s)
- Jas S Ward
- University of Jyvaskyla, Department of Chemistry Jyväskylä 40014 Finland
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears Crts de Valldemossa km 7.6 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crts de Valldemossa km 7.6 07122 Palma de Mallorca Baleares Spain
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry Jyväskylä 40014 Finland
| |
Collapse
|
8
|
Taipale E, Ward JS, Fiorini G, Stares DL, Schalley CA, Rissanen K. Dimeric iodine( i) and silver( i) cages from tripodal N-donor ligands via the [N–Ag–N] + to [N–I–N] + cation exchange reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01532j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexation of tripodal ligands with silver(I) salts generated M3L2 cage complexes that encapsulated anions within their cavities. Subsequent [N–Ag–N]+ to [N–I–N]+ cation exchange with I2 resulted in the corresponding halogen-bonded iodine(I) cages.
Collapse
Affiliation(s)
- Essi Taipale
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| | - Jas S. Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| | - Giorgia Fiorini
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| | - Daniel L. Stares
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| |
Collapse
|
9
|
Abstract
A detailed investigation of ligand exchange between iodine(I) ions in [N···I···N]+ halogen-bonded complexes is presented. Ligand exchange reactions were conducted to successfully confirm whether iodine(I) complex formation, via the classical...
Collapse
|
10
|
Taipale E, Siepmann M, Truong KN, Rissanen K. Iodine(I) and Silver(I) Complexes of Benzoimidazole and Pyridylcarbazole Derivatives. Chemistry 2021; 27:17412-17419. [PMID: 34605571 DOI: 10.1002/chem.202103152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/07/2022]
Abstract
The synthesis of iodine(I) complexes with either benzoimidazole or carbazole-derived sp2 N-containing Lewis bases is described, as well as their corresponding silver(I) complexes. The addition of elemental iodine to the linear two-coordinate Ag(I) complexes produces iodine(I) complexes with a three-center four-electron (3c-4e) [N-I-N]+ bond. The 1 H and 1 H-15 N HMBC NMR studies unambiguously confirm the formation of the complexes in all cases via the [N-Ag-N]+ →[N-I-N]+ cation exchange, with the 15 N NMR chemical shift change between 94 to 111 ppm when compared to the free ligand. The single crystal X-ray crystallographic studies on eight I+ complexes revealed highly symmetrical [N-I-N]+ bonds with I-N bond distances of 2.21-2.26 Å and N-I-N angles of 177-180°, whilst some of the corresponding Ag+ complexes showed a clear deviation from linearity with N-Ag-N angles of ca. 150° and Ag-N bond distances of 2.09-2.18 Å.
Collapse
Affiliation(s)
- Essi Taipale
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Marcel Siepmann
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014, Jyväskylä, Finland
| |
Collapse
|
11
|
Priola E, Giordana A, Mazzeo PP, Mahmoudi G, Gomila RM, Zubkov FI, Pokazeev KM, Valchuk KS, Bacchi A, Zangrando E, Frontera A. On the nature of recurrent Au⋯π motifs in tris(2,2'-bipyridine)M(II) (M = Fe, Co and Ni) dicyanoaurate(I) salts: X-ray analysis and theoretical rationalization. Dalton Trans 2021; 50:16954-16960. [PMID: 34617941 DOI: 10.1039/d1dt02632a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript reports the synthesis, X-ray characterization and DFT study of three new [M(bipy)3]2[Au(CN)2]3(X) (M = Fe, Co, and Ni; bipy = 2,2'-bipyridine; X = anion) ionic compounds. These salts are composed of [M(bipy)3]2+ dications and [Au(CN)2]- anions in a 2 : 3 ratio. The positive charge is compensated by X = Cl- anions in compounds 1 (M = Fe) and 2 (M = Co) and X = OH- in 3 (M = Ni). The three tridentate bipyridine ligands define the coordination of the M2+ cation, resulting in a nearly octahedral coordination sphere. The linear dicyanoaurate(I) anions are completely surrounded by a cradle of aromatic rings with Au-ring centroid distances below the sum of van der Waals radii, evidencing the existence of a specific Au⋯π attraction. This interaction has been analyzed in terms of the role of the Au-atom (Lewis acid or Lewis base) using DFT calculations combined with the quantum theory of atoms in molecules (QTAIM), noncovalent interaction plot index (NCIplot) and natural bond orbital (NBO) computational tools. The NBO suggests that the Au⋯π interaction is an example of a coinage bond in spite of the anionic nature of the acceptor and the cationic nature of the donor.
Collapse
Affiliation(s)
- Emanuele Priola
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Alessia Giordana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Paolo P Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Fedor I Zubkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Kuzma M Pokazeev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Karina S Valchuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| |
Collapse
|