1
|
Terschüren T, Schnakenburg G, Streubel R. Synthesis of P-bridged, planar bis(NHC) BCl 3 adducts. Dalton Trans 2024; 53:16377-16383. [PMID: 39318186 DOI: 10.1039/d4dt02235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Planar PV- or PIII-bridged bis(NHCs), which have only been employed in transition metal complex chemistry so far, were subjected to BCl3-containing solutions targeting the corresponding bis(NHC) BCl3 adducts. While the P(O)NEt2-bridged bis(NHC) showed the expected adduct formation, the PNEt2-bridged bis(NHC) reacted not only at the carbene moiety but also at the P-NEt2 functional group. The latter enabled access to the first 1,4-diphosphinine bis(NHC) main group adduct; its formation and properties were investigated by DFT calculations. Through the same route, a 1,4-diphosphinine bis(imidazolium) scaffold was generated and explored theoretically and experimentally. The new 1,4-diphosphinines are shown to possess high global aromaticity and a unique P-centred reactivity, allowing the formation of hitherto inaccessible [4 + 2]-cycloaddition products, thus suggesting potential new applications compared to previously known 1,4-diphosphinine derivatives.
Collapse
Affiliation(s)
- Tatjana Terschüren
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
2
|
Leung JN, Huynh HV. Mesoionic Janus-Type Dicarbene: Complexes, Adducts, and Catalytic Studies. Chemistry 2024; 30:e202402127. [PMID: 38953274 DOI: 10.1002/chem.202402127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
The preparations of homo- and hetero-bimetallic complexes as well as thiourea and selenourea derivatives of a mesoionic Janus-type N-heterocyclic dicarbene (diNHC) are reported. Analogues of its monocationic intermediate NHC have also been obtained for comparison. Using the main group adducts, the π-acceptor properties of both NHCs were determined using low temperature 77Se NMR spectroscopy completing their stereoelectronic profiling. Moreover, catalytic investigations reveal that the mesoionic dipalladium Janus-diNHC complex can be used in the sequential C2- and C5-arylation of 1-methylpyrrole for the preparation of non-symmetrical 2,5-diarylpyrroles.
Collapse
Affiliation(s)
- Jia Nuo Leung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117453, Republic of Singapore
| | - Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117453, Republic of Singapore
| |
Collapse
|
3
|
Ibáñez S, Peris E. Discrete Quadruple Stacks Formed in a Nanosized Metallorectangle. Inorg Chem 2024; 63:16070-16074. [PMID: 39126404 DOI: 10.1021/acs.inorgchem.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
An iridium-cornered nanosized metallorectangle was obtained by combining a quinoxalinophenanthrophenazine-connected Janus-di-imidazolylidene ligand and 4,4'-bipyridine. This metallorectangle was used as host for a series of planar molecules, including pyrene, triphenylene, perylene, coronene, and N,N'-dimethyl-naphthalenetetracarboxy-diimide (NTCDI). The binding of coronene and NTCDI followed a strongly positive cooperative 1:2 stoichiometric binding model, as the inclusion of the first guest generates the geometrical requirements for the optimum encapsulation of the second planar molecule. The simultaneous encapsulation of coronene and NTCDI produces a heteroguest inclusion system, whose exchange dynamics was studied by means of variable temperature 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12006, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12006, Spain
| |
Collapse
|
4
|
Ibáñez S, Mejuto C, Cerón K, Sanz Miguel PJ, Peris E. A corannulene-based metallobox for the encapsulation of fullerenes. Chem Sci 2024; 15:13415-13420. [PMID: 39183911 PMCID: PMC11339943 DOI: 10.1039/d4sc03661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
A corannulene-bis-N-imidazolium salt was used for the synthesis of two corannulene-bis-N-heterocyclic carbenes of dirhodium(i) complexes of formula (corannulene-di-NHC)[RhCl(COD)]2 and (corannulene-di-NHC)[RhCl(CO)2]2. Both complexes were characterized by spectroscopic techniques, and the electron-donating properties of the corannulene-di-NHC ligand were studied by means of infrared spectroscopy and cyclic voltammetry. The complex (corannulene-di-NHC)[RhCl(COD)]2 was used for the encapsulation of fullerenes C60 and C70, generating host-guest complexes with 2 : 1 stoichiometry, as evidenced by 1H NMR and ITC titrations. Then, a tetra-rhodium(i) metallo-rectangle supported by two corannulene-bis-imidazolylidene ligands and two cofacial 4,4'-bipyridine ligands was prepared and characterized. This metallobox is capable of quantitatively encapsulating fullerenes C60 and C70, forming complexes that are highly stable even at high temperatures. The molecular structure of the metallobox with encapsulated C60 reveals a perfect size and shape complementarity that benefits from the concave-convex π-π interaction between the polyaromatic surfaces of the host and the guest.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Carmen Mejuto
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Katherin Cerón
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| |
Collapse
|
5
|
Terschüren T, Schnakenburg G, Streubel R. Tapping into the coordinative potential of a C-functional 1,4-diphosphabarrelene using two sets of complementary ligand centres. Dalton Trans 2024. [PMID: 39092591 DOI: 10.1039/d4dt01817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
7,8-Dihydro-1,4-diphosphabarrelene diselones and bis(NHCs) were synthesised and employed as multitopic P,Se and P,C ligands in coordination chemistry, benefitting from a unique bent, P-bridged topology, thus being promising new building blocks.
Collapse
Affiliation(s)
- Tatjana Terschüren
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
6
|
Terschüren T, Schnakenburg G, Streubel R. Application of phosphorus-bridged rigid, bent bis(NHCs) as dipodal ligands in main group and transition metal chemistry. Dalton Trans 2024; 53:5043-5050. [PMID: 38375673 DOI: 10.1039/d4dt00378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Phosphorus-bridged rigid, bent bis(N-heterocyclic) carbenes have not been reported, so far, despite having structural features that could make them interesting ligands in coordination and main group element chemistry. In previous reports, we had demonstrated that tuning of σ3- and σ4-phosphorus environments in planarised bis(NHCs) affects electronic properties and can provide additional coordination sites. Herein, we report on first examples of synthesis and conversion of 1,4-diphosphabarrelene-related compounds into rigid bent, doubly P-bridged bis(NHCs). The formation of main group element adducts with substrates from group 13, 14 and 15 illustrates opportunities to access novel scaffolds and to create nonplanar branching points. DFT calculations reveal the new bis(NHCs) to be good candidates as novel soft/hard ligands with up to four coordination sites. The synthesis of a dinuclear Fe(CO)4 complex is demonstrated. The thermal retro-[4 + 2] cycloaddition was theoretically and experimentally explored for a variety of ionic and zwitterionic 1,4-diphosphabarrelenes, and the generation and trapping of a dinuclear Fe(0) bis(NHC) complex with a tricyclic 1σ2,4 σ2-diphosphinine scaffold is presented.
Collapse
Affiliation(s)
- Tatjana Terschüren
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
7
|
Ibáñez S, Salvà P, Dawe LN, Peris E. Guest-Shuttling in a Nanosized Metallobox. Angew Chem Int Ed Engl 2024; 63:e202318829. [PMID: 38179825 DOI: 10.1002/anie.202318829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
An iridium-conjoined long and narrow metallorectangle was obtained by combining a quinoxalinophenanthrophenazine-connected Janus-di-imidazolylidene ligand and pyrazine. The size and shape of this assembly together with the fused polyaromatic nature of its panels provides it with properties that are uncommon for other metallosupramolecular assemblies. For example, this nanosized 'slit-like' metallobox is able show very large binding affinities with planar organic molecules in such a way, that the cavity is asymmetrically occupied by the guest molecule. This unsymmetrical conformation leads to the existence of a large amplitude motion of these guests, which slide between the two sides of the cavity of the host, thus constituting rare examples of molecular shuttles.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón, E-12006, Spain
| | - Paula Salvà
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón, E-12006, Spain
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2 L 3 C5, Canada
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón, E-12006, Spain
| |
Collapse
|
8
|
Leung JN, Huynh HV. Design of a Mesoionic Janus-type Dicarbene. J Am Chem Soc 2024; 146:3622-3626. [PMID: 38306245 DOI: 10.1021/jacs.3c13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A versatile synthetic strategy for the preparation of homo- and heterobimetallic complexes bearing an unprecedented mesoionic Janus-type diNHC is presented. Moreover, its electronic property is evaluated, and a preliminary catalytic application in the direct diarylation of 1-methylpyrrole is demonstrated.
Collapse
Affiliation(s)
- Jia Nuo Leung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| | - Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| |
Collapse
|
9
|
Abstract
Metallacarboranes have attracted significant attention due to their unique properties. Considerable efforts have been made on the reactions around the metal centers or the metal ion itself, while transformations of functional groups of the metallacarboranes have been much less explored. We presented here the formation of imidazolium-functionalized nickelacarboranes (2), their subsequent conversion to nickelacarborane-supported N-heterocyclic carbenoids (NHCs, 3), and the reactivities of 3 toward Au(PPh3)Cl and Se powder, which resulted in the formation of bis-gold carbene complexes (4) and NHC selenium adducts (5). Cyclic voltammetry of 4 shows two reversible peaks, corresponding to the interconversion transformations NiII ↔ NiIII and NiIII ↔ NiIV. Theoretical calculations demonstrated relatively high-lying lone-pair orbitals, weak B-H···H-C interactions between the BH units and the methyl group, and weak B-H···π interactions between the BH groups and the vacant p-orbital of the carbene.
Collapse
Affiliation(s)
- Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Fan Qi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| |
Collapse
|
10
|
Pankov RO, Prima DO, Kostyukovich AY, Minyaev ME, Ananikov VP. Synthesis and a combined experimental/theoretical structural study of a comprehensive set of Pd/NHC complexes with o-, m-, and p-halogen-substituted aryl groups (X = F, Cl, Br, CF 3). Dalton Trans 2023; 52:4122-4135. [PMID: 36883531 DOI: 10.1039/d2dt03665g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pd/NHC complexes (NHCs - N-heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF3 substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy. Here, we report the first optimized synthetic approach to access a comprehensive range of o-, m-, and p-XC6H4-substituted NHC ligands, including incorporation into Pd complexes (X = F, Cl, Br, CF3). The catalytic activity of the obtained Pd/NHC complexes was compared in the Mizoroki-Heck reaction. For substitution with halogen atoms, the following relative trend was observed: X = Br > F > Cl, and for all halogen atoms, the catalytic activity changed in the following order: m-X, p-X > o-X. Evaluation of the relative catalytic activity showed a significant increase in the catalyst performance in the case of Br and CF3 substituents compared to the unsubstituted Pd/NHC complex.
Collapse
Affiliation(s)
- Roman O Pankov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Bołt M, Mermela A, Żak P. Influence of Bis‐NHC Ligand on Platinum‐Catalyzed Hydrosilylation of Internal Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University in Poznan Institution Uniwersytetu Poznanskiego Poznań, 8 61-614 Poznan Poland
| | - Aleksandra Mermela
- Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University in Poznan Institution Uniwersytetu Poznanskiego Poznań, 8 61-614 Poznan Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University in Poznan Institution Uniwersytetu Poznanskiego Poznań, 8 61-614 Poznan Poland
| |
Collapse
|
12
|
Synthesis and Characterisation of a Heterobimetallic N-heterocyclic Carbene Rhodium Ruthenium Complex as Catalyst for Transfer Hydrogenation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Puerta Lombardi BM, Pezoulas ER, Suvinen RA, Harrison A, Dubrawski ZS, Gelfand BS, Tuononen HM, Roesler R. Bis[cyclic (alkyl)(amino)carbene] isomers: Stable trans-bis(CAAC) versus facile olefin formation for cis-bis(CAAC). Chem Commun (Camb) 2022; 58:6482-6485. [PMID: 35583166 DOI: 10.1039/d2cc01476a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomeric bis(aldiminium) salts with a 1,4-cyclohexylene framework were synthesized. The first isolable bis(CAAC) was prepared from the trans-stereoisomer and its ditopic ligand competency was proven by conversion to iridium(I) and rhodium(I) complexes. Upon deprotonation, the cis-isomer yielded an electron rich olefin via a classic, proton-catalyzed pathway. The CC bond formation from the desired cis-bis(CAAC) was shown to be thermodynamically very favorable and to involve a small activation barrier. Compounds that can be described as insertion products of the cis-bis(CAAC) into the E-H bonds of NH3, CH3CN and H2O were also identified.
Collapse
Affiliation(s)
- Braulio M Puerta Lombardi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Ethan R Pezoulas
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Roope A Suvinen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Alexander Harrison
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Heikki M Tuononen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Roland Roesler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
14
|
Gillen JH, Moore CA, Vuong M, Shajahan J, Anstey MR, Alston JR, Bejger CM. Synthesis and disassembly of an organometallic polymer comprising redox-active Co 4S 4 clusters and Janus biscarbene linkers. Chem Commun (Camb) 2022; 58:4885-4888. [PMID: 35352711 DOI: 10.1039/d2cc00953f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we show for the first time that main-chain organometallic polymers (MCOPs) can be prepared from Janus N-heterocyclic carbene (NHC) linkers and polynuclear cluster nodes. The crosslinked framework Co4S4-MCOP is synthesized via ligand displacement reactions and undergoes reversible electron transfer in the solid state. Discrete molecular cluster species can be excised from the framework by digesting the solid in solutions of excess monocarbene. Finally, we demonstrate a synthetic route to monodisperse framework particles via coordination modulation.
Collapse
Affiliation(s)
- Jonathan H Gillen
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Connor A Moore
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - My Vuong
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Juvairia Shajahan
- The Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | | | - Jeffrey R Alston
- The Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | - Christopher M Bejger
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
15
|
Wen Z, Maisonhaute E, Zhang Y, Roland S, Sollogoub M. Janus-type homo-, hetero- and mixed valence-bimetallic complexes with one metal encapsulated in a cyclodextrin. Chem Commun (Camb) 2022; 58:4516-4519. [PMID: 35302572 DOI: 10.1039/d2cc00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis-azolium salts with one azolium capping a perbenzylated α-cyclodextrin have been designed to generate Janus-type bimetallic complexes with various combinations of copper, silver, gold or palladium salts. Encapsulation of one metal center inside the cavity allowed (trans)metalation and oxidation reactions to be controlled at selected positions. In particular, it was possible to oxidize AuI into AuIII selectively on the position outside the cavity of the cyclodextrin on the bis-AuI Janus complex.
Collapse
Affiliation(s)
- Zhonghang Wen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques (LISE) UMR 8235. 4, place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| |
Collapse
|
16
|
Kaps A, Foro S, Plenio H. Bi- and trimetallic complexes with macrocyclic xanthene-4,5-diNHC ligands. Dalton Trans 2022; 51:2464-2479. [PMID: 35048930 DOI: 10.1039/d1dt03857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different types of bimetallic NHC-metal complexes were synthesized, whose NHC units are attached at the 4,5-positions of xanthene. The NHC units are in close proximity and are designed such that each carbene coordinates one ML unit, while the chelation of one metal by two NHC is not possible. Several xanthene-((NHC)ML)2 complexes with ML = RhCl(cod), IrCl(cod), RhCl(CO)2, IrCl(CO)2, AuCl, AgCl, CuCl and Pd(allyl)Cl were synthesized and investigated.
Collapse
Affiliation(s)
- Alexander Kaps
- Organometallic Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany.
| | - Sabine Foro
- Organometallic Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany.
| | - Herbert Plenio
- Organometallic Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany.
| |
Collapse
|