1
|
Harmandar K, Kaya EN, Tollu G, Sengul IF, Özdemir S, Atilla D. Synthesis, photo-physicochemical and biological properties of novel tetrahydropyrimidone-substituted metallo-phthalocyanines. Dalton Trans 2024; 53:16005-16017. [PMID: 39289954 DOI: 10.1039/d4dt02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, new peripherally substituted symmetric zinc and magnesium phthalocyanines (4 and 5) were successfully prepared by cyclotetramerization of the tetrahydropyrimidone (THPM)-linked phthalonitrile 3. The identity of the compounds were confirmed primarily through spectroscopic analysis including NMR, FT-IR, UV-Vis and MALDI-TOF mass spectroscopy. The photophysical and photochemical properties of the synthesized phthalocyanines (Pcs) were examined using UV-Vis absorption and fluorescence emission spectroscopy techniques. The quantum yields of singlet oxygen were found to be 0.50 and 0.33 for compounds 4 and 5 in DMSO, respectively. In addition to photo-physicochemical properties, the enhanced biological activities of compounds 4 and 5 were investigated using a range of biological assays, namely, antibiofilm, microbial cell viability, antioxidant, DNA cleavage, antimicrobial and photodynamic antimicrobial assays. The maximum DPPH inhibition of 4 and 5 was detected as 40.46% and 25.76% at 100 mg L-1, respectively. Fragmentation of the DNA molecule was observed at concentrations of 25 mg L-1, 50 mg L-1 and 100 mg L-1 for 4 and 5. Additionally, effective inhibition of microbial cell viability was observed with the targeted Pcs. The antibiofilm properties of these compounds were found to be concentration-dependent. The biofilm inhibition activities of 4 and 5 were found to be 96.01% and 92.04% for S. aureus, while they were 95.42% and 91.27%, for P. aeruginosa, respectively. The antimicrobial activities of 4 and 5 on different microorganisms were evaluated using the microdilution assay. In the case of photodynamic antimicrobial treatment, the newly synthesized Pcs showed more effective antimicrobial inhibition compared to the control. These findings suggest that compounds 4 and 5 can be used as promising photodynamic antimicrobial agents for the treatment of many diseases, particularly infectious diseases.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Esra Nur Kaya
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343 Mersin, Turkey
| | - Ibrahim F Sengul
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Devrim Atilla
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Yabalak E, Özdemir S, Al-Nuaimy MNM, Tollu G. From cornfield to catalyst support: Eco-friendly synthesis of Cu/CuO nanoparticles, immobilization on the waste corn husk fibers, photocatalytic exploration and bioactivity evaluation. CHEMOSPHERE 2024; 365:143328. [PMID: 39271076 DOI: 10.1016/j.chemosphere.2024.143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
This study presents an innovative approach to eco-friendly synthesis and utilization of copper nanoparticles (CuNPs) for photocatalytic applications, employing waste corn husk fibers as sustainable catalyst support. The synthesis of CuNPs was achieved through a green synthesis method utilizing myrtle extract. Subsequently, the remarkable photocatalytic activity of the CuNPs explored (76% removal efficiency of Crystal Violet), showcased their potential in environmental remediation applications. Furthermore, the immobilization of CuNPs onto waste corn husk fibers was investigated, aiming to develop a novel composite material with enhanced catalytic performance. A distinctive approach was introduced by immobilizing CuNPs onto fibers derived from corn husks, and waste biomass material, leading to a significant enhancement in photocatalytic efficiency, surpassing 95.1%. Furthermore, bioactivity evaluation studies revealed the significant antioxidant, antidiabetic, DNA fragmentation, cell viability, antibiofilm and antimicrobial properties of CuNPs. The antioxidant ability was determined at 100 mg/L as 87.12%. The most powerful antimicrobial activity of CuNP was found as a MIC value of 8 mg/L against E. faecalis. The cell viability inhibition of CuNP was 90.05% at 20 mg/L. CuNP exhibited biofilm inhibition activity at different concentrations. The antibiofilm ability was investigated against Staphylococcus aureus compared to Pseudomonas aureginosa. While the DNA cleavage activity of CuNP observed double-strand breaks at 50 and 100 mg, complete fragmentation occurred at 200 mg concentrations. The bioactivity of the synthesized CuNPs shed light on their potential biomedical applications. The synthesized CuNPs are characterized using various analytical techniques to elucidate their structural and morphological properties. Fourier-transform infrared (FTIR) analysis provided insights into the chemical composition and surface properties of the synthesized materials. EDS analysis confirmed their successful integration into waste corn husk fibers. Overall, this interdisciplinary study highlights the potential of CuNPs immobilized on waste corn husk fibers for addressing environmental pollution, advancing sustainable technologies and paving the way for the development of efficient catalysts with diverse functionalities.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| | | | - Gulsah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| |
Collapse
|
3
|
Sun L, Zhao Y, Peng H, Zhou J, Zhang Q, Yan J, Liu Y, Guo S, Wu X, Li B. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: recent advances. J Nanobiotechnology 2024; 22:210. [PMID: 38671474 PMCID: PMC11055261 DOI: 10.1186/s12951-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.
Collapse
Affiliation(s)
- Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Hongyi Peng
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, China
| | - Jingyu Yan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Susu Guo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
4
|
Ömeroğlu İ. Novel non-peripheral mercaptopyridine-substituted mono- and double-decker lutetium(III) phthalocyanines: synthesis, photophysicochemical and electrochemical properties. Dalton Trans 2024; 53:5985-5992. [PMID: 38465966 DOI: 10.1039/d3dt04341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this study, novel non-peripheral tetra-mercaptopyridine-substituted mono- and double-decker phthalocyanines (LuPc and LuPc2) containing lutetium(III) as a rare earth metal were synthesized and characterized using different spectroscopic techniques. ESR and electrochemical analyses were performed to support the sandwich structure of LuPc2. The g factor was determined to be 2.00039 and the characteristic first reduction couple at 0.29 V indicated a reduction of the radical Pc ring of LuPc2. In addition, the UV-Vis-NIR spectra of LuPc2 in neutral, reduced, and oxidized states demonstrate its intrinsic π-radical nature in CHCl3. The photophysicochemical properties of LuPc and LuPc2 were investigated in DMSO. It was found that mono-phthalocyanine (LuPc) is a more effective photosensitizer than double-decker (LuPc2) and metal-free (H2Pc) phthalocyanines based on a comparison of their photophysical and photochemical properties. The singlet oxygen quantum yields (ΦΔ) of the synthesized LuPc and LuPc2 compounds were calculated to be 0.57 and 0.14, respectively, and the obtained results were compared with H2Pc (ΦΔ = 0.04). Also, electrochemical measurements were performed to estimate their redox potentials and the results indicated the important electrochemical performance of double-decker phthalocyanine (LuPc2).
Collapse
Affiliation(s)
- İpek Ömeroğlu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
5
|
Ünlü S, Yaşa Atmaca G, Tuncel Elmalı F, Erdoğmuş A. Comparing Singlet Oxygen Generation of Schiff Base Substituted Novel Silicon Phthalocyanines by Sonophotochemical and Photochemical Applications. Photochem Photobiol 2023; 99:1233-1239. [PMID: 36691298 DOI: 10.1111/php.13782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
Although the sonophotodynamic method has an effective therapeutic outcome for anticancer treatment compared with the photodynamic method, there are not enough related studies in the literature and this study aims to contribute to the development of sonophotodynamic studies. For this purpose, the Schiff base substituted silicon phthalocyanines were designed and synthesized as effective sensitizer candidates and the photophysicochemical and sonophotochemical features of the phthalocyanines were examined to increase singlet oxygen efficiency. The calculated ΦΔ values indicate that the contribution of substituent groups improved the production of singlet oxygen compared with silicon (IV) phthalocyanine dichloride (SiPcCI2 ) and also the sonophotochemical applications increased the singlet oxygen yields. The ΦΔ values (ΦΔ = 0.76 for axially bis-{4-[(E)-(pyridin-3-ylimino)methyl]phenol} substituted silicon (IV) phthalocyanine (2a), 0.68 for axially bis-4-[(E)-{[(pyridin-3-yl)methyl]imino}methyl]phenol substituted silicon (IV) phthalocyanine (2b) in photochemical study) reached to ΦΔ = 0.98 for 2a, 0.94 for 2b in sonophotochemical study. This article will enrich the literature on increasing singlet oxygen yield.
Collapse
Affiliation(s)
- Seda Ünlü
- Department of Chemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | | | | | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Albayrak S, Farajzadeh N, Yasemin Yenilmez H, Özdemir S, Gonca S, Altuntaş Bayır Z. Fluorinated Phthalocyanine/Silver Nanoconjugates for Multifunctional Biological Applications. Chem Biodivers 2023:e202300389. [PMID: 37366243 DOI: 10.1002/cbdv.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile (1) and its metal phthalocyanines (2 and 3) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds (1-3), their nanoconjugates (4-6), and silver nanoparticles (7) were examined for the first time in this study. The antioxidant activities of biological candidates (1-7) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates (6). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates (1-7) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates (5 and 6) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates (1-6) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.
Collapse
Affiliation(s)
- Sedef Albayrak
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - Nazli Farajzadeh
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - H Yasemin Yenilmez
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, University of Mersin, Yenisehir, TR-33343, Mersin, Türkiye
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Yenisehir, TR-33343, Mersin, Türkiye
| | | |
Collapse
|
7
|
Ozay Y, Alterkaoui A, Kahya K, Özdemir S, Gonca S, Dizge N, Ocakoglu K, Kulekci MK. Antifouling and antibacterial performance evaluation of polyethersulfone membranes modified with AZ63 alloy. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1616-1629. [PMID: 37051786 DOI: 10.2166/wst.2022.396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Antibacterial membranes have attracted researchers' interest in recent years as a possible approach for dealing with biofouling on the membrane surface. This research aims to see if blending AZ63 Mg alloy into a polyethersulphone (PES) membrane can improve antifouling and separation properties. The composite membranes' pure water flux continued to increase from pristine PES to PES/AZ63 2.00 wt%. The results showed that PES/AZ63 2.00 wt% membrane supplied the highest permeate flux of E. coli. The steady-state fluxes of AZ63 composite membranes were 113.24, 104.38 and 44.79 L/m2h for PES/AZ63 2.00 wt%, 1.00 wt%, and 0.50 wt%, respectively. The enhanced biological activity of AZ63 was studied based on antioxidant activity, DNA cleavage, antimicrobial, anti-biofilm, bacterial viability inhibition and photodynamic antimicrobial therapy studies. The maximum DPPH scavenging activity was determined as 81.25% with AZ63. AZ63 indicated good chemical nuclease activity and also showed moderate antimicrobial activity against studied strains. The highest biofilm inhibition of AZ63 was 83.25% and 71.63% towards P. aeruginosa and S. aureus, respectively. The cell viability inhibition activity of AZ63 was found as 96.34% against E. coli. The photodynamic antimicrobial therapy results displayed that AZ63 demonstrated 100% bacterial inhibition when using E. coli.
Collapse
Affiliation(s)
- Yasin Ozay
- Department of Environmental Protection Technologies, Tarsus University, 33400 Mersin, Turkey
| | - Aya Alterkaoui
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey E-mail:
| | - Kürsat Kahya
- Faculty of Engineering, Department of Manufacturing Engineering, Tarsus University, 33400 Tarsus, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Tech. Sci. Vocational School, Mersin University, TR-33343 Mersin, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33343 Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey E-mail:
| | - Kasım Ocakoglu
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, 33400 Tarsus, Turkey
| | - Mustafa Kemal Kulekci
- Faculty of Engineering, Department of Mechanical Engineering, Tarsus University, 33400, Tarsus, Turkey
| |
Collapse
|
8
|
Günsel A, Mutlu N, Yaşa Atmaca G, Günsel H, Bilgiçli AT, Erdoğmuş A, Nilüfer Yarasir M. Novel Graphene Oxide/Zinc Phthalocyanine Composites Bearing 3‐Chloro‐4‐Fluorophenoxy: Potential Usage for Sono/Photochemical Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Yenilmez HY, Farajzadeh N, Güler Kuşçulu N, Bahar D, Özdemir S, Tollu G, Güllü M, Altuntaş Bayır Z. Effect of Axial Ligand Length on Biological and Anticancer Properties of Axially Disubstituted Silicon Phthalocyanines. Chem Biodivers 2023; 20:e202201167. [PMID: 36912724 DOI: 10.1002/cbdv.202201167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
In this study, three new axially disubstituted silicon phthalocyanines (SiPc1-3) and their quaternized phthalocyanine derivatives (QSiPc1-3) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds (QSiPc1-3) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1-3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.
Collapse
Affiliation(s)
- H Yasemin Yenilmez
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Turkey
| | - Nazli Farajzadeh
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Turkey
| | - Nilgün Güler Kuşçulu
- Department of Chemistry Technology, Mustafa Çıkrıkçıoğlu Vocational School, Kayseri University, TR-38280, Kayseri, Turkey
| | - Dilek Bahar
- Genome & Stem Cell Center (GENKOK), Erciyes University, TR-38039, Kayseri, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Gülşah Tollu
- Department of Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Mithat Güllü
- Department of Biology, Faculty of Science, Erciyes University, TR-38039, Kayseri, Turkey
| | - Zehra Altuntaş Bayır
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Turkey
| |
Collapse
|
10
|
Novel silicon phthalocyanines with improved singlet oxygen generation by Sono-photochemical applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Atmaca GY, Aksel M, Bilgin MD, Erdoğmuş A. Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line. Photodiagnosis Photodyn Ther 2023; 42:103339. [PMID: 36781009 DOI: 10.1016/j.pdpdt.2023.103339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Sonophotodynamic therapy (SPDT), a combination of photodynamic therapy (PDT) and sonodynamic therapy (SDT), may offer theraputic advantage. The therapeutic effects of sonodynamic, photodynamic, and sonophotodynamic of 5-(trifluoromethyl)-2-thiopyridine substituted silicon phthalocyanine (gy3) and its quaternized derivative (gy3q) were examined in vitro on prostate cancer using PC3 cells. METHODS The SDT, PDT and SPDT efficiency was determined by using MTT test.Apoptosis mechanism was evaluated by HOPI staining. RESULTS AND DISCUSSIONS According to MTT results, the phthalocyanines decreased cell viability when compared with a control group. Also, apoptosis measurement data represents that the phthalocyanines would produce much better therapeutic outcomes compare to PDT and SDT by utilizing SPDT. Further studies should be performed to understand the effectiveness of SPDT.
Collapse
Affiliation(s)
- Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| | - Mehran Aksel
- Department of Biophysic, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Mehmet Dinçer Bilgin
- Department of Biophysic, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey.
| |
Collapse
|
12
|
Gümrükçü Köse G, Keser Karaoğlan G. Synthesis of a novel axially substituted silicon phthalocyanine sensitizer for efficient singlet oxygen generation by comparing PDT and SPDT studies. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ünlü S, Elmalı FT, Atmaca GY, Erdoğmuş A. Synthesis of axially Schiff base new substituted silicon phthalocyanines and investigation of photochemical and sono-photochemical properties. Photodiagnosis Photodyn Ther 2022; 40:103192. [PMID: 36336321 DOI: 10.1016/j.pdpdt.2022.103192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Sono-photodynamic therapy, which show a very high therapeutic effect compared to photodynamic therapy, is a newer method for anticancer treatments. However, unlike Photodynamic therapy (PDT), the number of studies measuring the efficiency of singlet oxygen for the Sono-photodynamic therapy (SPDT) method is quite insufficient in the literature. Therefore, this study aimed to synthesis novel axially substituted silicon (IV) phthalocyanines containing imine groups with improved photochemical properties and then reported the efficiency of singlet oxygen by both of photochemical and sono-photochemical studies. According to the results, the substituent group increased the singlet oxygen yield of silicon (IV) phthalocyanine dichloride and the sono-photochemical effect increased the singlet oxygen yields (ΦΔ=0.35 for 2a, 0.69 for 2b in photochemical study, 0.78 for 2a, 0.97 for 2b in sono-photochemical study).This article may pave the way to achieve high singlet oxygen efficiency.
Collapse
Affiliation(s)
- Seda Ünlü
- Department of Chemistry, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Fikriye Tuncel Elmalı
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey.
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| |
Collapse
|
14
|
Karaoğlan GK. Synthesis of a novel zinc phthalocyanine with peripherally coordinated Ru(II) complexes; sono-photochemical, photochemical and photophysical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Farajzadeh N, Özdemir S, Tollu G, Bayır ZA, Koçak MB. Biological properties of hexadeca-substituted metal phthalocyanines bearing different functional groups. J Inorg Biochem 2022; 234:111888. [DOI: 10.1016/j.jinorgbio.2022.111888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
16
|
Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14020402. [PMID: 35214133 PMCID: PMC8874657 DOI: 10.3390/pharmaceutics14020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Fluorination of pharmaceutical agents has afforded crucial modifications to their pharmacological profiles, leading to important advances in medicinal chemistry. On the other hand, metallodrugs are considered to be valuable candidates in the treatment of several diseases, albeit with the caveat that they may exhibit pharmacological disadvantages, such as poor water solubility, low bioavailability and short circulating time. To surmount these limitations, two approaches have been developed: one based on the design of novel metallodrug-delivering carriers and the other based on optimizing the structure of the ligands bound to the metal center. In this context, fluorination of the ligands may bring beneficial changes (physicochemical and biological) that can help to elude the aforementioned drawbacks. Thus, in this review, we discuss the use of fluorinated ligands in the design of metallodrugs that may exhibit potential anticancer activity.
Collapse
|
17
|
Farajzadeh N, Aftab J, Yenilmez HY, Özdemir S, Gonca S, Altuntas Bayir Z. The design and Synthesis of Metallophthalocyanine-Gold Nanoparticle Hybrids as Biological Agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00484d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the synthesis of 4-2-(4-ethynyl-N,N-dimethylaniline)pthalonitrile (1) and its new peripherally tetra-substituted metal phthalocyanines {M= Co (2), Zn (3)}. Characterization of the prepared compounds was carried out by performing...
Collapse
|
18
|
Farajzadeh N, Çelik Ç, Özdemir S, Gonca S, Koçak MB. Biological properties of novel mono and double-decker hexadeca-substituted metal phthalocyanines. NEW J CHEM 2022. [DOI: 10.1039/d1nj05721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports chemical agents that exhibit efficient antibacterial photodynamic, antimicrobial, antioxidant, biofilm inhibition, and DNA cleavage activities.
Collapse
Affiliation(s)
- Nazli Farajzadeh
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Çetin Çelik
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Turkey, TR-33343 Yenisehir, Mersin, Turkey
| | - Makbule Burkut Koçak
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
19
|
Farajzadeh N, Güler Kuşçulu N, Yenilmez HY, Bahar D, Altuntas Bayir Z. Anticancer and Biological Properties of New Axially Disubstituted Silicon Phthalocyanines. Dalton Trans 2022; 51:7539-7550. [DOI: 10.1039/d2dt01033j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports the synthesis of three novel axially disubstituted silicon phthalocyanines (1-3-Si) and their quaternized phthalocyanines (1-3-QSi). The resulting compounds were characterized by applying spectroscopic techniques including 1H NMR,...
Collapse
|