1
|
Xiao JZ, Cai ZX, Pan ZZ, Wang Y, Jiang N, Yin L. Copper(I)-Catalyzed Asymmetric 1,4-Hydroarsination of α,β-Unsaturated Compounds. Angew Chem Int Ed Engl 2025; 64:e202413834. [PMID: 39556032 DOI: 10.1002/anie.202413834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
Herein, a copper(I)-catalyzed asymmetric 1,4-hydroarsination of β-substituted α,β-unsaturated esters is achieved in moderate to excellent yields with high to excellent enantioselectivity, based on the proposed nucleophilic [Cu]-AsPh2 species. As for α-substituted α,β-unsaturated esters, a 1,4-hydroarsination/enantioselective protonation event occurs smoothly in satisfying results. Furthermore, β-substituted α,β-unsaturated ketone, α,β-unsaturated amide, and α,β-unsaturated phosphine sulfide are well applied in the present catalytic system. Finally, some control experiments show that HAsPh2 is activated through coordination with the copper(I) catalyst and HAsPh2 exhibits inferior soft Lewis basicity to HPPh2 in the presence of a copper(I)-bisphosphine complex.
Collapse
Affiliation(s)
- Jun-Zhao Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Zhen-Xi Cai
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Ye Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| |
Collapse
|
2
|
Belli RG, Muir V, Dyck NB, Pantazis DA, Sousa TPA, Slusar CR, Parkin HC, Rosenberg L. Exploring Electrophilic Hydrophosphination via Metal Phosphenium Intermediates. Chemistry 2024; 30:e202302924. [PMID: 38242847 DOI: 10.1002/chem.202302924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Two Mo(0) phosphenium complexes containing ancillary secondary phosphine ligands have been investigated with respect to their ability to participate in electrophilic addition at unsaturated substrates and subsequent P-H hydride transfer to "quench" the resulting carbocations. These studies provide stoichiometric "proof of concept" for a proposed new metal-catalyzed electrophilic hydrophosphination mechanism. The more strongly Lewis acidic phosphenium complex, [Mo(CO)4(PR2H)(PR2)]+ (R=Ph, Tolp), cleanly hydrophosphinates 1,1-diphenylethylene, benzophenone, and ethylene, while other substrates react rapidly to give products resulting from competing electrophilic processes. A less Lewis acidic complex, [Mo(CO)3(PR2H)2(PR2)]+, generally reacts more slowly but participates in clean hydrophosphination of a wider range of unsaturated substrates, including styrene, indene, 1-hexene, and cyclohexanone, in addition to 1,1-diphenylethylene, benzophenone, and ethylene. Mechanistic studies are described, including stoichiometric control reactions and computational and kinetic analyses, which probe whether the observed P-H addition actually does occur by the proposed electrophilic mechanism, and whether hydridic P-H transfer in this system is intra- or intermolecular. Preliminary reactivity studies indicate challenges that must be addressed to exploit these promising results in catalysis.
Collapse
Affiliation(s)
- Roman G Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Vanessa Muir
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Nicholas B Dyck
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tânia P A Sousa
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Carly R Slusar
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Hayley C Parkin
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| |
Collapse
|
3
|
Zhang S, Jiang N, Xiao JZ, Lin GQ, Yin L. Copper(I)-Catalyzed Asymmetric Hydrophosphination of 3,3-Disubstituted Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202218798. [PMID: 37591817 DOI: 10.1002/anie.202218798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Herein, a copper(I)-catalyzed asymmetric hydrophosphination of 3,3-disubstituted cyclopropenes is reported. It provides a series of phosphine derivatives in high to excellent diastereo- and enantioselectivities. The methodology enjoys broad substrate scope on both 3,3-disubstituted cyclopropenes and diarylphosphines. The high stereoselectivity is attributed to both the high stability of the Cu(I)-(R,R)-QUINOXP* complex in the presence of stoichiometric HPPh2 and the produced phosphines, and the high-performance asymmetric induction of the Cu(I)-(R,R)-QUINOXP* complex. Finally, the method is used for the synthesis of new chiral phosphine-olefin compounds built on a cyclopropane skeleton, one of which serves as a wonderful ligand in Rh-catalyzed asymmetric conjugate addition of phenylboronic acid to various α,β-unsaturated compounds.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Nan Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Shi Y, Chen L, Gao Q, Li J, Guo Y, Fan B. Application of Oxazaborolidine Catalysts (CBS) on Enantioselective 1,4-Addition of Diarylphosphine Oxides to α,β-Unsaturated Thioesters. Org Lett 2023; 25:6495-6500. [PMID: 37646432 DOI: 10.1021/acs.orglett.3c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Here, we report the first catalytic enantioselective 1,4-addition of diarylphosphine oxides to α,β-unsaturated thioesters. Importantly, the most common and commercial oxazaborolidine (CBS) was employed as a catalyst for its new application without being activated by strong protonic acids or Lewis acids and led to the chiral thioesters in excellent yields and enantioselectivities. Furthermore, this method features mild reaction conditions (room temperature and air-insensitive), good substrate tolerance, and easy scalability.
Collapse
Affiliation(s)
- Yinrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Lirong Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Qi Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Jiuling Li
- School of Chemistry & Environment, Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University) State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650500, China
| | - Yafei Guo
- School of Chemistry & Environment, Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University) State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650500, China
| | - Baomin Fan
- School of Chemistry & Environment, Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University) State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
5
|
Wang C, Yin P, Dai YH, Ye J, Duan WL. Pincer-nickel catalyzed asymmetric addition of HPPh2 to enones toward the synthesis of chiral phosphines. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Dannenberg SG, Seth DM, Finfer EJ, Waterman R. Divergent Mechanistic Pathways for Copper(I) Hydrophosphination Catalysis: Understanding That Allows for Diastereoselective Hydrophosphination of a Tri-substituted Styrene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven G. Dannenberg
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Dennis M. Seth
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Emma J. Finfer
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| |
Collapse
|
7
|
Lau S, Hood TM, Webster RL. Broken Promises? On the Continued Challenges Faced in Catalytic Hydrophosphination. ACS Catal 2022; 12:10939-10949. [PMID: 36082053 PMCID: PMC9442583 DOI: 10.1021/acscatal.2c03144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
![]()
In this Perspective, we discuss what we perceive to be
the continued
challenges faced in catalytic hydrophosphination chemistry. Currently
the literature is dominated by catalysts, many of which are highly
effective, that generate the same phosphorus architectures, e.g.,
anti-Markovnikov products from the reaction of activated alkenes and
alkynes with diarylphosphines. We highlight the state of the art in
stereoselective hydrophosphination and the scope and limitations of
chemoselective hydrophosphination with primary phosphines and PH3. We also highlight the progress in the chemistry of the heavier
homologues. In general, we have tried to emphasize what is missing
from our hydrophosphination armament, with the aim of guiding future
research targets.
Collapse
Affiliation(s)
- Samantha Lau
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Thomas M. Hood
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
8
|
Gallant SK, Tipker RM, Glueck DS. Copper-Catalyzed Asymmetric Alkylation of Secondary Phosphines via Rapid Pyramidal Inversion in P-Stereogenic Cu–Phosphido Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah K. Gallant
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ryan M. Tipker
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - David S. Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
9
|
Wang K, Fan R, Wei X, Fang W. Palladacyclic N-heterocyclic carbene precatalysts for transition metal catalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Belli RG, Yang J, Bahena EN, McDonald R, Rosenberg L. Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman G. Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Jin Yang
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Erick Nuñez Bahena
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
11
|
Huang JJ, Zhang XQ, Yang JJ, Gong JF, Song MP. Chiral (phosphine)-(imidazoline) PCN pincer palladium(II) complexes: synthesis and application in asymmetric hydrophosphination of 2-alkenoylpyridines with diphenylphosphine. Dalton Trans 2022; 51:8350-8367. [DOI: 10.1039/d2dt01078j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new chiral PCN pincer Pd(II) complexes 3a−l with aryl-based (phosphine)-(imidazoline) ligands were conveniently synthesized from readily available starting materials with the key step being phosphination/C−H palladation reaction....
Collapse
|
12
|
Geer AM, Tejel C. Organo-phosphanide and -phosphinidene complexes of Groups 8–11. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|