1
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024:10.1007/s00775-024-02076-8. [PMID: 39424709 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
Wen X, Ma Y, Chen J, Wang B. A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA. Org Biomol Chem 2024; 22:5729-5733. [PMID: 38932595 DOI: 10.1039/d4ob00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
We report herein a synthetically useful catalytic system for aliphatic C-H oxidation with a mononuclear nonheme cobalt(II) complex and m-chloroperbenzoic acid (m-CPBA). Preliminary mechanistic studies suggest that a high-valent cobalt-oxygen species (e.g., cobalt(IV)-oxo or cobalt(III)-oxyl) is the oxidant that effects C-H oxidation via a rate-determining hydrogen atom abstraction (HAA) step.
Collapse
Affiliation(s)
- Xiang Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yidong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Kumar M, Gupta MK, Ansari M, Ansari A. C-H bond activation by high-valent iron/cobalt-oxo complexes: a quantum chemical modeling approach. Phys Chem Chem Phys 2024; 26:4349-4362. [PMID: 38235511 DOI: 10.1039/d3cp05866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeIVO (species 1) and CoIVO ↔ CoIII-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity. DFT and DLPNO-CCSD(T) calculations predict that the iron-oxo species possesses a triplet as the ground state, while the cobalt-oxo has a doublet as the ground state. Furthermore, we have investigated the mechanistic pathways for the first C-H bond activation, as well as the desaturation of the alkanes. The mechanism was determined to be a two-step process, wherein the first hydrogen atom abstraction (HAA) represents the rate-limiting step, involving the proton-coupled electron transfer (PCET) process. However, we found that the second HAA step is highly exothermic for both species. Our calculations suggest that the iron-oxo species (Fe-O = 1.672 Å) exhibit relatively sluggish behavior compared to the cobalt-oxo species (Co-O = 1.854 Å) in C-H bond activation, attributed to a weak metal-oxygen bond. MO, NBO, and deformation energy analysis reveal the importance of weakening the M-O bond in the cobalt species, thereby reducing the overall barrier to the reaction. This catalyst was found to have a C-H activation barrier relatively smaller than that previously reported in the literature.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Mursaleem Ansari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
4
|
Biswas S, Chowdhury SN, Lepcha P, Sutradhar S, Das A, Paine TK, Paul S, Biswas AN. Electrochemical generation of high-valent oxo-manganese complexes featuring an anionic N5 ligand and their role in O-O bond formation. Dalton Trans 2023; 52:16616-16630. [PMID: 37882084 DOI: 10.1039/d3dt02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Generation of high-valent oxomanganese complexes through controlled removal of protons and electrons from low-valent congeners is a crucial step toward the synthesis of functional analogues of the native oxygen evolving complex (OEC). In-depth studies of the water oxidation activity of such biomimetic compounds help in understanding the mechanism of O-O bond formation presumably occurring in the last step of the photosynthetic cycle. Scarce reports of reactive high-valent oxomanganese complexes underscore the impetus for the present work, wherein we report the electrochemical generation of the non-heme oxomanganese(IV) species [(dpaq)MnIV(O)]+ (2) through a proton-coupled electron transfer (PCET) process from the hydroxomanganese complex [(dpaq)MnIII(OH)]ClO4 (1). Controlled potential spectroelectrochemical studies of 1 in wet acetonitrile at 1.45 V vs. NHE revealed quantitative formation of 2 within 10 min. The high-valent oxomanganese(IV) transient exhibited remarkable stability and could be reverted to the starting complex (1) by switching the potential to 0.25 V vs. NHE. The formation of 2via PCET oxidation of 1 demonstrates an alternate pathway for the generation of the oxomanganese(IV) transient (2) without the requirement of redox-inactive metal ions or acid additives as proposed earlier. Theoretical studies predict that one-electron oxidation of [(dpaq)MnIV(O)]+ (2) forms a manganese(V)-oxo (3) species, which can be oxidized further by one electron to a formal manganese(VI)-oxo transient (4). Theoretical analyses suggest that the first oxidation event (2 to 3) takes place at the metal-based d-orbital, whereas, in the second oxidation process (3 to 4), the electron eliminates from an orbital composed of equitable contribution from the metal and the ligand, leaving a single electron in the quinoline-dominant orbital in the doublet ground spin state of the manganese(VI)-oxo species (4). This mixed metal-ligand (quinoline)-based oxidation is proposed to generate a formal Mn(VI) species (4), a non-heme analogue of the species 'compound I', formed in the catalytic cycle of cytochrome P-450. We propose that the highly electrophilic species 4 catches water during cyclic voltammetry experiments and results in O-O bond formation leading to electrocatalytic oxidation of water to hydrogen peroxide.
Collapse
Affiliation(s)
- Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Panjo Lepcha
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Subhankar Sutradhar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata-700009, India
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| |
Collapse
|
5
|
Monika, Kumar M, Somi, Sarkar A, Gupta MK, Ansari A. Theoretical study of the formation of metal-oxo species of the first transition series with the ligand 14-TMC: driving factors of the "Oxo Wall". Dalton Trans 2023; 52:14160-14169. [PMID: 37750348 DOI: 10.1039/d3dt02109b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Terminal metal-oxo species of the early transition metal series are well known, whereas those for the late transition series are rare, and this is related to the "Oxo Wall". Here, we have undertaken a theoretical study on the formation of metal-oxo species from the metal hydroperoxo species of the 3d series (Cr, Mn, Fe, Co, Ni, and Cu) with the ligand 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) via O⋯O bond cleavage. DFT calculations reveal that the barrier for O⋯O bond cleavage is higher with the late transition metals (Co, Ni, and Cu) than the early transition metals (Cr, Mn, and Fe), and the formed late metal-oxo species are also thermodynamically less stable. The higher barrier may be due to electronic repulsion because of the pairing of d electrons. In the late transition metal series, the electron goes into an antibonding orbital, which decreases the bond order and hence decreases the possibility of metal-oxo formation. Computed structural parameters and spin densities suggest that valence tautomerism occurs in the late transition metal-oxo species which remain as a metal-oxyl. Our findings support the concept of the "Oxo Wall".
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Somi
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Arup Sarkar
- Department of Chemistry, The University of Chicago 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
6
|
Sen A, Ansari A, Swain A, Pandey B, Rajaraman G. Probing the Origins of Puzzling Reactivity in Fe/Mn-Oxo/Hydroxo Species toward C-H Bonds: A DFT and Ab Initio Perspective. Inorg Chem 2023; 62:14931-14941. [PMID: 37650771 DOI: 10.1021/acs.inorgchem.3c01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Activation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and ab initio (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [Mn+H3buea(O/OH)] (M = Mn and Fe, n = II to V; H3buea = tris[(N'-tert-butylureaylato)-N-ethylene)]aminato towards the activation of dihydroanthracene (DHA). The H-bonding network in the ligand architecture influences the ground state-excited state gap and brings several excited states of the same spin multiplicity closer in energy, which triggers reactivity via one of those excited states, reducing the kinetic barriers for the C-H bond activation and rationalizing several puzzling reactivity trends observed in various high-valent Mn/Fe-oxo(hydroxo) species.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
7
|
Sen A, Rajaraman G. Does the Spin State and Oriented External Electric Field Boost the Efficiency of Fe(II) Pincer Catalyst toward CO 2 Hydrogenation Reaction? Inorg Chem 2023; 62:2342-2358. [PMID: 36689485 DOI: 10.1021/acs.inorgchem.2c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we have explored the catalytic reactivities of four PNP-pincer supported Fe(II) complexes, namely, [(iPrPNMeP)FeH2(CO)] (1), [(iPrPNMeP)FeH(CO)(BH4)] (2), [(iPrPNHP)FeH2(CO)] (3), and [(iPrPNMeP)FeH(BH4)] (4) (iPrPNMeP = MeN{CH2CH2(PiPr2)}2 and iPrPNHP = HN{CH2CH2(PiPr2)}2) toward reductive CO2 hydrogenation for formate production. Our density functional theory and ab initio complete active space self-consistent field study have identified three fundamental steps in this catalytic transformation: (i) anchoring of the CO2 molecule in the vicinity of the metal using noncovalent interactions, (ii) catalyst regeneration via H2 cleavage, and (iii) formate rebound step leading to catalytic poisoning. The variations in the catalytic efficiency observed among these catalysts were attributed to either easing of steps (i) and (ii) or the hampering step (iii). This can be achieved in various chemical/non-chemical ways, for instance, (a) incorporation of strong-field ligands such as CO facilitating single-state reactivity and eliminating two-state reactivity that generally enhances the rate and (b) inclusion of Lewis acids such as LiOTf and strong bases found to either avoid catalytic poisoning or ease the H-H cleavages, to enhance the rate of reaction (c) evading mixing of excited open-shell singlet states to the ground closed-shell singlet state that hampers the catalytic regeneration. We have probed the role of oriented external electric fields (OEEFs) in the entire mechanistic profile for the best and worst catalyst, and our study suggests that imposing OEEFs opposite to the reaction axis (z-axis) fastens the catalytic regeneration step and, at the same time, hampers catalytic poisoning. The application of OEEFs is found to regulate the energetics of various spin states and can hamper two-state reactivity, therefore increasing the efficiency. Thus, this study provides insights into the CO2 hydrogenation mechanism where the role of bases/Lewis acid, ligand design, spin states, and electric field in a particular direction has been established and is, therefore, likely to pave the way forward for a new generation of catalysts.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
8
|
Karmalkar DG, Larson VA, Malik DD, Lee YM, Seo MS, Kim J, Vasiliauskas D, Shearer J, Lehnert N, Nam W. Preparation and Characterization of a Formally Ni IV-Oxo Complex with a Triplet Ground State and Application in Oxidation Reactions. J Am Chem Soc 2022; 144:22698-22712. [PMID: 36454200 DOI: 10.1021/jacs.2c10196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
High-valent first-row transition-metal-oxo complexes are important intermediates in biologically and chemically relevant oxidative transformations of organic molecules and in the water splitting reaction in (artificial) photosynthesis. While high-valent Fe- and Mn-oxo complexes have been characterized in detail, much less is known about their analogues with late transition metals. In this study, we present the synthesis and detailed characterization of a unique mononuclear terminal Ni-O complex. This compound, [Ni(TAML)(O)(OH)]3-, is characterized by an intense charge-transfer (CT) band around 730 nm and has an St = 1 ground state, as determined by magnetic circular dichroism spectroscopy. From extended X-ray absorption fine structure (EXAFS), the Ni-O bond distance is 1.84 Å. Ni K edge XAS data indicate that the complex contains a Ni(III) center, which results from an unusually large degree of Ni-O π-bond inversion, with one hole located on the oxo ligand. The complex is therefore best described as a low-spin Ni(III) complex (S = 1/2) with a bound oxyl (O•-) ligand (S = 1/2), where the spins of Ni and oxyl are ferromagnetically coupled, giving rise to the observed St = 1 ground state. This bonding description is roughly equivalent to the presence of a Ni-O single (σ) bond. Reactivity studies show that [Ni(TAML)(O)(OH)]3- is a strong oxidant capable of oxidizing thioanisole and styrene derivatives with large negative ρ values in the Hammett plot, indicating its electrophilic nature. The intermediate also shows high reactivity in C-H bond activation of hydrocarbons with a kinetic isotope effect of 7.0(3) in xanthene oxidation.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jin Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Dovydas Vasiliauskas
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Frei H. Time-Resolved Vibrational and Electronic Spectroscopy for Understanding How Charges Drive Metal Oxide Catalysts for Water Oxidation. J Phys Chem Lett 2022; 13:7953-7964. [PMID: 35981106 DOI: 10.1021/acs.jpclett.2c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporally resolved spectroscopy is a powerful approach for gaining detailed mechanistic understanding of water oxidation at robust Earth-abundant metal oxide catalysts for guiding efficiency improvement of solar fuel conversion systems. Beyond detecting and structurally identifying surface intermediates by vibrational and accompanying optical spectroscopy, knowledge of how charges, sequentially delivered to the metal oxide surface, drive the four-electron water oxidation cycle is critical for enhancing catalytic efficiency. Key issues addressed in this Perspective are the experimental requirements for establishing the kinetic relevancy of observed surface species and the discovery of the rate-boosting role of encounters of two or more one-electron surface hole charges, often in the form of randomly hopping metal oxo or oxyl moieties, for accessing very low-barrier O-O bond-forming pathways. Recent spectroscopic breakthroughs of metal oxide photo- and electrocatalysts inspire future research poised to take advantage of new highly sensitive spectroscopic tools and of methods for fast catalysis triggering.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Monika, Aman, Ansari A. Theoretical insights for generation of terminal metal-oxo species and involvement of the “oxo wall”. NEW J CHEM 2022. [DOI: 10.1039/d2nj03098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight on the formation of high-valent metal-oxo by the O⋯O bond cleavage of metal hydroperoxo species and our theoretical findings also illustrate the concept “oxo wall”.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry Central University of Haryana, 123031, India
| | - Aman
- Department of Chemistry Central University of Haryana, 123031, India
| | - Azaj Ansari
- Department of Chemistry Central University of Haryana, 123031, India
| |
Collapse
|