1
|
Jana RD, Das A, Samanta R, Banerjee S, Paul S, Paine TK. Stereoelectronic Tuning of Bioinspired Nonheme Iron(IV)-Oxo Species by Amide Groups in Primary and Secondary Coordination Spheres for Selective Oxygenation Reactions. Inorg Chem 2024; 63:21042-21058. [PMID: 39433290 DOI: 10.1021/acs.inorgchem.4c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Two mononuclear iron(II) complexes, [(6-amide2-BPMEN)FeII](OTf)2 (1) and [(6-amide-Me-BPMEN)FeII(OTf)](OTf) (2), supported by two BPMEN-derived (BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridine-2-yl-methyl)ethane-1,2-diamine) ligands bearing one or two amide functionalities have been isolated to study their reactivity in the oxygenation of C-H and C═C bonds using isopropyl 2-iodoxybenzoate (iPr-IBX ester) as the oxidant. Both 1 and 2 contain six-coordinate high-spin iron(II) centers in the solid state and in solution. The 6-amide2-BPMEN ligand stabilizes an S = 1 iron(IV)-oxo intermediate, [(6-amide2-BPMEN)FeIV(O)]2+ (1A). The oxidant (1A) oxygenates the C-H and C═C bonds with a high selectivity. Oxidant 1A, upon treatment with 2,6-lutidine, is transformed into another oxidant [{(6-amide2-BPMEN)-(H)}FeIV(O)]+ (1B) through deprotonation of an amide group, resulting in a stronger equatorial ligand field and subsequent stabilization of the triplet ground state. In contrast, no iron-oxo species could be observed from complex 2 and [(6-Me2-BPMEN)FeII(OTf)2] (3) under similar experimental conditions. The iron(IV)-oxo oxidant 1A shows the highest A/K selectivity in cyclohexane oxidation and 3°/2° selectivity in adamantane oxidation reported for any synthetic nonheme iron(IV)-oxo complexes. Theoretical investigation reveals that the hydrogen bonding interaction between the -NH group of the noncoordinating amide group and Fe═O core smears out the equatorial charge density, reducing the triplet-quintet splitting, and thus helping complex 1A to achieve better reactivity.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Rajib Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| |
Collapse
|
2
|
Josephy T, Kumar R, Bleher K, Röhs F, Glaser T, Rajaraman G, Comba P. Synthesis, Characterization, and Reactivity of Bispidine-Iron(IV)-Tosylimido Species. Inorg Chem 2024; 63:12109-12119. [PMID: 38875304 DOI: 10.1021/acs.inorgchem.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Reported are the synthesis and detailed studies of the iron(IV)-tosylimido complexes of two isomeric pentadentate bispidine ligands (bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives). This completes a series of five tosylimido complexes with comparable pentadentate amine/pyridine ligands, where the corresponding [(L)FeIV═O]2+ oxidants have been studied in detail. The characterization of the two new complexes in solution (UV-vis-NIR, Mössbauer, HR-ESI-MS) shows that these oxidants have an intermediate spin (S = 1) electronic ground state. The reactivities have been studied as oxidants in C-H activation at 1,3-cyclohexadiene and nitrogen atom transfer to thioanisole. For the latter substrate, the entire set of data for the five ligands and for both nitrogen and oxygen atom transfer is now available and the interesting observation is that oxygen atom transfer is, as expected, generally faster than nitrogen atom transfer, with the exception of the two ligands that have four and three pyridine groups oriented parallel to the Fe-O and Fe-N axes. A thorough DFT analysis indicates that this is due to steric effects in the case of the [(L)FeIV═O]2+ species, which are less important in the [(L)FeIV═NTs]2+ compounds due to partial electron transfer from the thioanisole substrate to the iron(IV)-tosylimido oxidant.
Collapse
Affiliation(s)
- Thomas Josephy
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Katharina Bleher
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Fridolin Röhs
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Rasheed W, Pal N, Aboelenen AM, Banerjee S, Oloo WN, Klein JEMN, Fan R, Xiong J, Guo Y, Que L. NMR and Mössbauer Studies Reveal a Temperature-Dependent Switch from S = 1 to 2 in a Nonheme Oxoiron(IV) Complex with Faster C-H Bond Cleavage Rates. J Am Chem Soc 2024; 146:3796-3804. [PMID: 38299607 PMCID: PMC11238627 DOI: 10.1021/jacs.3c10694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
S = 2 FeIV═O centers generated in the active sites of nonheme iron oxygenases cleave substrate C-H bonds at rates significantly faster than most known synthetic FeIV═O complexes. Unlike the majority of the latter, which are S = 1 complexes, [FeIV(O)(tris(2-quinolylmethyl)amine)(MeCN)]2+ (3) is a rare example of a synthetic S = 2 FeIV═O complex that cleaves C-H bonds 1000-fold faster than the related [FeIV(O)(tris(pyridyl-2-methyl)amine)(MeCN)]2+ complex (0). To rationalize this significant difference, a systematic comparison of properties has been carried out on 0 and 3 as well as related complexes 1 and 2 with mixed pyridine (Py)/quinoline (Q) ligation. Interestingly, 2 with a 2-Q-1-Py donor combination cleaves C-H bonds at 233 K with rates approaching those of 3, even though Mössbauer analysis reveals 2 to be S = 1 at 4 K. At 233 K however, 2 becomes S = 2, as shown by its 1H NMR spectrum. These results demonstrate a unique temperature-dependent spin-state transition from triplet to quintet in oxoiron(IV) chemistry that gives rise to the high C-H bond cleaving reactivity observed for 2.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nabhendu Pal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ahmed M Aboelenen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Saikat Banerjee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Williamson N Oloo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Johannes E M N Klein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Kumar R, Ansari A, Comba P, Rajaraman G. Rebound or Cage Escape? The Role of the Rebound Barrier for the Reactivity of Non-Heme High-Valent Fe IV =O Species. Chemistry 2024; 30:e202303300. [PMID: 37929771 DOI: 10.1002/chem.202303300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Owing to their high reactivity and selectivity, variations in the spin ground state and a range of possible pathways, high-valent FeIV =O species are popular models with potential bioinspired applications. An interesting example of a structure-reactivity pattern is the detailed study with five nonheme amine-pyridine pentadentate ligand FeIV =O species, including N4py: [(L1 )FeIV =O]2+ (1), bntpen: [(L2 )FeIV =O]2+ (2), py2 tacn: [(L3 )FeIV =O]2+ (3), and two isomeric bispidine derivatives: [(L4 )FeIV =O]2+ (4) and [(L5 )FeIV =O]2+ (5). In this set, the order of increasing reactivity in the hydroxylation of cyclohexane differs from that with cyclohexadiene as substrate. A comprehensive DFT, ab initio CASSCF/NEVPT2 and DLPNO-CCSD(T) study is presented to untangle the observed patterns. These are well reproduced when both activation barriers for the C-H abstraction and the OH rebound are taken into account. An MO, NBO and deformation energy analysis reveals the importance of π(pyr) → π*xz (FeIII -OH) electron donation for weakening the FeIII -OH bond and thus reducing the rebound barrier. This requires that pyridine rings are oriented perpendicularly to the FeIII -OH bond and this is a subtle but crucial point in ligand design for non-heme iron alkane hydroxylation.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Haryana, 123031, India
| | - Peter Comba
- Institute of Inorganic Chemistry &, Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120, Heidelberg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India
| |
Collapse
|
5
|
Hädeler J, Velmurugan G, Lauer R, Radhamani R, Keppler F, Comba P. Natural Abiotic Iron-Oxido-Mediated Formation of C 1 and C 2 Compounds from Environmentally Important Methyl-Substituted Substrates. J Am Chem Soc 2023. [PMID: 37930326 DOI: 10.1021/jacs.3c06709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Organic and inorganic volatile compounds containing one carbon atom (C1), such as carbon dioxide, methane, methanol, formaldehyde, carbon monoxide, and chloromethane, are ubiquitous in the environment, are key components in global carbon cycling, play an important role in atmospheric physics and chemistry, e.g., as greenhouse gases, destroy stratospheric and tropospheric ozone, and control the atmospheric oxidation capacity. Up to now, most C1 compounds in the environment were associated with complex metabolic and enzymatic pathways in organisms or to combustion processes of organic matter. We now present compelling evidence that many C1 and C2 compounds have a common origin in methyl groups of methyl-substituted substrates that are cleaved by the iron oxide-mediated formation of methyl radicals. This scenario is derived from experiments with a mechanistically well-studied bispidine-iron-oxido complex as oxidant and dimethyl sulfoxide as the environmentally relevant model substrate and is supported by computational modeling based on density functional theory and ab initio quantum-chemical studies. The exhaustive experimental model studies, also involving extensive isotope labeling, are complemented with the substitution of the bispidine model system by environmentally relevant iron oxides and, finally, a collection of soils with varying iron and organic matter contents. The combination of all data suggests that the iron oxide-mediated formation of methyl radicals from methyl-substituted substrates is a common abiotic source for widespread C1 and C2 compounds in the environment.
Collapse
Affiliation(s)
- Jonas Hädeler
- Institut für Geowissenschaften, INF 234-236, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut INF 270, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Rebekka Lauer
- Institut für Geowissenschaften, INF 234-236, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Rejith Radhamani
- Anorganisch-Chemisches Institut INF 270, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Keppler
- Institut für Geowissenschaften, INF 234-236, Universität Heidelberg, D-69120 Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut INF 270, Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, INF 205, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Buchhorn M, Krewald V. The π-interactions of ammonia ligands evaluated by ab initio ligand field theory. Dalton Trans 2023; 52:6685-6692. [PMID: 37128808 DOI: 10.1039/d3dt00511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ammonia and amine ligands are commonly assumed to be σ-only ligands in coordination chemistry, i.e. they are not expected to interact significantly with a metal via a π path. Ligand field analyses employing the Angular Overlap Model resulted in good fits to experimental data without a π parameter for ammonia ligands, thereby supporting this assumption. In this work, we challenge this assumption and suggest that it is an oversimplification. We use complete active space calculations for electronic structure analyses of copper ammine complexes that are in good agreement with the transitions observed in experimental UV-vis spectra. These findings lead to a reinterpretation of the experimental spectra that necessitates a significant π interaction of the ammonia ligands. The strength of the ammonia π interaction is evaluated by parameterizing the ligand field splittings of a series of metal hexammine complexes ([M(NH3)6]n+ with M = Cr, Mn, Fe, Co, Ni, Ru, Os and n = 2, 3) and selected tetrammine complexes ([M(NH3)4]n+ with M = Cr, Mn, Fe, Co, Ni and n = 2 or 3) with the Angular Overlap Model. The resulting π parameters show that ammonia is a π donor of similar strength as chloride.
Collapse
Affiliation(s)
- Moritz Buchhorn
- TU Darmstadt, Department of Chemistry, Theoretical Chemistry, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| | - Vera Krewald
- TU Darmstadt, Department of Chemistry, Theoretical Chemistry, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
7
|
Bleher K, Comba P, Kass D, Ray K, Wadepohl H. Reactivities of iron(IV)-oxido compounds with pentadentate bispidine ligands. J Inorg Biochem 2023; 241:112123. [PMID: 36701984 DOI: 10.1016/j.jinorgbio.2023.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The FeIVO complexes of bispidines (3,7-diazabicyclo[3.3.1]nonane derivatives) are known to be highly reactive oxidants - with the tetradentate bispidine, the so far most reactive ferryl complex has been reported and two isomeric pentadentate ligands also lead to very reactive high-valent oxidants. With a series of 4 new bispidine derivatives we now try to address the question why the bispidine scaffold in general leads to very reactive oxidants and how this can be tuned by ligand modifications. The study is based on a full structural, spectroscopic and electrochemical analysis of the iron(II) precursors, spectroscopic data of the iron(IV)-oxido complexes, a kinetic analysis of the stoichiometric oxidation of thioanisole by five different bispidine‑iron(IV)-oxido complexes and on product analyses of reactions by the five ferryl oxidants with thioanisole, β-methylstyrene and cis-stilbene as substrates.
Collapse
Affiliation(s)
- Katharina Bleher
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany; Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Germany.
| | - Dustin Kass
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | - Kallol Ray
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Bleher K, Comba P, Gross JH, Josephy T. ESI and tandem MS for mechanistic studies with high-valent transition metal species. Dalton Trans 2022; 51:8625-8639. [DOI: 10.1039/d2dt00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of high-valent metal species has been in the focus of research for over 20 years. Mass spectrometry (MS) represents a technique routinely used for their characterization, in particular...
Collapse
|