1
|
Tian R, Yu L, Tian F, Zhao J, Chen W, Zhai Q. Effect of inulin, galacto-oligosaccharides, and polyphenols on the gut microbiota, with a focus on Akkermansia muciniphila. Food Funct 2024; 15:4763-4772. [PMID: 38590256 DOI: 10.1039/d4fo00428k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Inulins, galacto-oligosaccharides (GOS) and polyphenols are considered to stimulate the growth of Akkermansia muciniphila (A. muciniphila) in the gut. We performed a meta-analysis of six microbiome studies (821 stool samples from 451 participants) to assess the effects of inulin, GOS, and polyphenols on the abundance of A. muciniphila in the gut. The intervention of GOS increased the relative abundance of A. muciniphila in healthy participants. Additionally, metabolic pathways associated with carbohydrate metabolism and short-chain fatty acid release were enriched following the GOS intervention. Furthermore, after the GOS intervention, the coexisting microbial communities of A. muciniphila, such as Eubacterium hallii and Bacteroides, exhibited an enhanced correlation with A. muciniphila. In conclusion, our findings suggest that GOS may promote the growth of A. muciniphila in the gut by modulating the gut microbiota composition.
Collapse
Affiliation(s)
- Ruocen Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Gao Y, Li W, Huang X, Lyu Y, Yue C. Advances in Gut Microbiota-Targeted Therapeutics for Metabolic Syndrome. Microorganisms 2024; 12:851. [PMID: 38792681 PMCID: PMC11123306 DOI: 10.3390/microorganisms12050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Previous investigations have illuminated the significant association between the gut microbiome and a broad spectrum of health conditions, including obesity, diabetes, cardiovascular diseases, and psychiatric disorders. Evidence from certain studies suggests that dysbiosis of the gut microbiota may play a role in the etiology of obesity and diabetes. Moreover, it is acknowledged that dietary habits, pharmacological interventions, psychological stress, and other exogenous factors can substantially influence the gut microbial composition. For instance, a diet rich in fiber has been demonstrated to increase the population of beneficial bacteria, whereas the consumption of antibiotics can reduce these advantageous microbial communities. In light of the established correlation between the gut microbiome and various pathologies, strategically altering the gut microbial profile represents an emerging therapeutic approach. This can be accomplished through the administration of probiotics or prebiotics, which aim to refine the gut microbiota and, consequently, mitigate the manifestations of associated diseases. The present manuscript evaluates the recent literature on the relationship between gut microbiota and metabolic syndrome published over the past three years and anticipates future directions in this evolving field.
Collapse
Affiliation(s)
- Yu Gao
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, China
| |
Collapse
|
3
|
Pérez K, Cassano A, Ruby-Figueroa R. The Optimization of Operating Conditions in the Cross-Flow Microfiltration of Grape Marc Extract by Response Surface Methodology. Foods 2023; 13:20. [PMID: 38201048 PMCID: PMC10778125 DOI: 10.3390/foods13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The recovery of valuable compounds like phenolic compounds and sugars from grape marc extracts implies different steps, including clarification. In this study, a response surface methodology (RSM) was used as a statistical tool to study the effects of operating conditions such as transmembrane pressure (TMP), temperature and feed flow rate on the performance of a microfiltration (MF) monotubular ceramic membrane with a pore size of 0.14 μm in the clarification of grape marc extract from the Carménère variety, as well to optimize the process conditions by implementing the Box-Behnken statistical design. The desirability function approach was applied to analyze the regression model equations in order to maximize the permeate flux and concentration of malvidin-3-O-glucoside, glucose and fructose in the clarified extract. The optimal operating conditions were found to be 1 bar, 29.01 °C and 5.64 L/min. Under these conditions, the permeate flux and concentration of malvidin-3-O-glucoside, glucose and fructose resulted in 65.78 L/m2h, 43.73 mg/L, 305.89 mg/L, and 274.85 mg/L, respectively.
Collapse
Affiliation(s)
- Karla Pérez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, 87036 Rende, Italy
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| |
Collapse
|
4
|
Sha SP, Modak D, Sarkar S, Roy SK, Sah SP, Ghatani K, Bhattacharjee S. Fruit waste: a current perspective for the sustainable production of pharmacological, nutraceutical, and bioactive resources. Front Microbiol 2023; 14:1260071. [PMID: 37942074 PMCID: PMC10628478 DOI: 10.3389/fmicb.2023.1260071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Fruits are crucial components of a balanced diet and a good source of natural antioxidants, that have proven efficacy in various chronic illnesses. Various kinds of waste generated from fruit industries are considered a global concern. By utilizing this fruit waste, the international goal of "zero waste" can be achieved by sustainable utilization of these waste materials as a rich source of secondary metabolites. Moreover, to overcome this waste burden, research have focused on recovering the bioactive compounds from fruit industries and obtaining a new strategy to combat certain chronic diseases. The separation of high-value substances from fruit waste, including phytochemicals, dietary fibers, and polysaccharides which can then be used as functional ingredients for long-term health benefits. Several novel extraction technologies like ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) could provide an alternative approach for successful extraction of the valuable bioactives from the fruit waste for their utilization as nutraceuticals, therapeutics, and value-added products. Most of these waste-derived secondary metabolites comprise polyphenols, which have been reported to have anti-inflammatory, insulin resistance-treating, cardiovascular disease-maintaining, probiotics-enhancing, or even anti-microbial and anti-viral capabilities. This review summarizes the current knowledge of fruit waste by-products in pharmacological, biological, and probiotic applications and highlights several methods for identifying efficacious bioactive compounds from fruit wastes.
Collapse
Affiliation(s)
- Shankar Prasad Sha
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Debabrata Modak
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sourav Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sumit Prasad Sah
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Kriti Ghatani
- Food Microbiology Laboratory, Department of Food Technology, University of North Bengal, Raja Rammohunpur, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| |
Collapse
|
5
|
Paripati N, Nesi L, Sterrett JD, Dawud LM, Kessler LR, Lowry CA, Perez LJ, DeSipio J, Phadtare S. Gut Microbiome and Lipidome Signatures in Irritable Bowel Syndrome Patients from a Low-Income, Food-Desert Area: A Pilot Study. Microorganisms 2023; 11:2503. [PMID: 37894161 PMCID: PMC10609137 DOI: 10.3390/microorganisms11102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastroenterological disorder with triggers such as fructose. We showed that our IBS patients suffering from socioeconomic challenges have a significantly high consumption of high-fructose corn syrup (HFCS). Here, we characterize gut microbial dysbiosis and fatty acid changes, with respect to IBS, HFCS consumption, and socioeconomic factors. Fecal samples from IBS patients and healthy controls were subjected to microbiome and lipidome analyses. We assessed phylogenetic diversity and community composition of the microbiomes, and used linear discriminant analysis effect size (LEfSe), analysis of compositions of microbiomes (ANCOM) on highly co-occurring subcommunities (modules), least absolute shrinkage and selection operator (LASSO) on phylogenetic isometric log-ratio transformed (PhILR) taxon abundances to identify differentially abundant taxa. Based on a Procrustes randomization test, the microbiome and lipidome datasets correlated significantly (p = 0.002). Alpha diversity correlated with economic factors (p < 0.001). Multiple subsets of the phylogenetic tree were associated with HFCS consumption (p < 0.001). In IBS patients, relative abundances of potentially beneficial bacteria such as Monoglobaceae, Lachnospiraceae, and Ruminococcaceae were lower (p = 0.007), and Eisenbergiella, associated with inflammatory disorders, was higher. In IBS patients, certain saturated fatty acids were higher and unsaturated fatty acids were lower (p < 0.05). Our study aims first to underscore the influence of HFCS consumption and socioeconomic factors on IBS pathophysiology, and provides new insights that inform patient care.
Collapse
Affiliation(s)
- Nikita Paripati
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Emergency Medicine, Penn Medicine, Pittsburgh, PA 15261, USA
| | - Lauren Nesi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Urology, Detroit Medical Center, Detroit, MI 4820, USA
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lyanna R Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Joshua DeSipio
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Gastroenterology, Cooper University Hospital, Camden, NJ 08103, USA
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
6
|
Sinrod AJG, Shah IM, Surek E, Barile D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023; 9:e20499. [PMID: 37867799 PMCID: PMC10589784 DOI: 10.1016/j.heliyon.2023.e20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Grape pomace is the primary wine coproduct consisting primarily of grape seeds and skins. Grape pomace holds immense potential as a functional ingredient to improve human health while its valorization can be beneficial for industrial sustainability. Pomace contains bioactive compounds, including phenols and oligosaccharides, most of which reach the colon intact, enabling interaction with the gut microbiome. Microbial analysis found that grape pomace selectively promotes the growth of many commensal bacteria strains, while other types of bacteria, including various pathogens, are highly sensitive to the pomace and its components and are inactivated. In vitro studies showed that grape pomace and its extracts inhibit the growth of pathogenic bacteria in Enterobacteriaceae family while increasing the growth and survival of some beneficial bacteria, including Bifidobacterium spp. and Lactobacillus spp. Grape pomace supplementation in mice and rats improves their gut microbiome complexity and decreases diet-induced obesity as well as related illnesses, including insulin resistance, indicating grape pomace could improve human health. A human clinical trial found that pomace, regardless of its phenolic content, had cardioprotective effects, suggesting that dietary fiber induced those health benefits. To shed light on the active components, this review explores the potential prebiotic capacity of select bioactive compounds in grape pomace.
Collapse
Affiliation(s)
- Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ece Surek
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Istinye University, 34396, Istanbul, Turkey
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| |
Collapse
|
7
|
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023; 13:1402. [PMID: 37759802 PMCID: PMC10526737 DOI: 10.3390/biom13091402] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia and oxidative stress. Oxidative stress plays a crucial role in the development and progression of diabetes and its complications. Nutritional antioxidants derived from dietary sources have gained significant attention due to their potential to improve antidiabetic therapy. This review will delve into the world of polyphenols, investigating their origins in plants, metabolism in the human body, and relevance to the antioxidant mechanism in the context of improving antidiabetic therapy by attenuating oxidative stress, improving insulin sensitivity, and preserving β-cell function. The potential mechanisms of, clinical evidence for, and future perspectives on nutritional antioxidants as adjuvant therapy in diabetes management are discussed.
Collapse
|
8
|
Masenga SK, Kirabo A. Salt and Gut Microbiota in Heart Failure. Curr Hypertens Rep 2023; 25:173-184. [PMID: 37219766 DOI: 10.1007/s11906-023-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE OF REVIEW The role and underlying mechanisms mediated by dietary salt in modulating the gut microbiota and contributing to heart failure (HF) are not clear. This review summarizes the mechanisms of dietary salt and the gut-heart axis in HF. RECENT FINDINGS The gut microbiota has been implicated in several cardiovascular diseases (CVDs) including HF. Dietary factors including high consumption of salt play a role in influencing the gut microbiota, resulting in dysbiosis. An imbalance of microbial species due to a reduction in microbial diversity with accompanying immune cell activation has been implicated in the pathogenesis of HF via several mechanisms. The gut microbiota and gut-associated metabolites contribute to HF by reducing gut microbiota biodiversity and activating several signaling pathways. High dietary salt modulates the gut microbiota composition and exacerbate or induce HF by increasing the expression of the epithelial sodium/hydrogen exchanger isoform 3 in the gut, cardiac expression of beta myosin heavy chain, activation of the myocyte enhancer factor/nuclear factor of activated T cell, and salt-inducible kinase 1. These mechanisms explain the resulting structural and functional derangements in patients with HF.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
9
|
Santa K, Watanabe K, Kumazawa Y, Nagaoka I. Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. Int J Mol Sci 2023; 24:12167. [PMID: 37569540 PMCID: PMC10419318 DOI: 10.3390/ijms241512167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A variety of phytocompounds contained in medical plants have been used as medication, including Kampo (traditional Japanese) medicine. Phytochemicals are one category of the chemical compounds mainly known as antioxidants, and recently, their anti-inflammatory effects in preventing chronic inflammation have received much attention. Here, we present a narrative review of the health-promotion and disease-prevention effects of phytochemicals, including polyphenols, the latter of which are abundant in onions, oranges, tea, soybeans, turmeric, cacao, and grapes, along with the synergetic effects of vitamin D. A phenomenon currently gaining popularity in Japan is finding non-disease conditions, so-called ME-BYO (mibyou) and treating them before they develop into illnesses. In addition to lifestyle-related diseases such as metabolic syndrome and obesity, dementia and frailty, commonly found in the elderly, are included as underlying conditions. These conditions are typically induced by chronic inflammation and might result in multiple organ failure or cancer if left untreated. Maintaining gut microbiota is important for suppressing (recently increasing) intestinal disorders and for upregulating immunity. During the COVID-19 pandemic, the interest in phytochemicals and vitamin D for disease prevention increased, as viral and bacterial infection to the lung causes fatal inflammation, and chronic inflammation induces pulmonary fibrosis. Furthermore, sepsis is a disorder inducing severe organ failure by the infection of microbes, with a high mortality ratio in non-coronary ICUs. However, antimicrobial peptides (AMPs) working using natural immunity suppress sepsis at the early stage. The intake of phytochemicals and vitamin D enhances anti-inflammatory effects, upregulates immunity, and reduces the risk of chronic disorders by means of keeping healthy gut microbiota. Evidence acquired during the COVID-19 pandemic revealed that daily improvement and prevention of underlying conditions, in terms of lifestyle-related diseases, is very important because they increase the risk of infectious diseases. This narrative review discusses the importance of the intake of phytochemicals and vitamin D for a healthy lifestyle and the prevention of ME-BYO, non-disease conditions.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Japan
| |
Collapse
|
10
|
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel) 2023; 12:antiox12040979. [PMID: 37107354 PMCID: PMC10135959 DOI: 10.3390/antiox12040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martin-Cabrejas
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
11
|
Esquivel-Hernández DA, Martínez-López YE, Sánchez-Castañeda JP, Neri-Rosario D, Padrón-Manrique C, Giron-Villalobos D, Mendoza-Ortíz C, Resendis-Antonio O. A network perspective on the ecology of gut microbiota and progression of type 2 diabetes: Linkages to keystone taxa in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1128767. [PMID: 37124757 PMCID: PMC10130651 DOI: 10.3389/fendo.2023.1128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The human gut microbiota (GM) is a dynamic system which ecological interactions among the community members affect the host metabolism. Understanding the principles that rule the bidirectional communication between GM and its host, is one of the most valuable enterprise for uncovering how bacterial ecology influences the clinical variables in the host. Methods Here, we used SparCC to infer association networks in 16S rRNA gene amplicon data from the GM of a cohort of Mexican patients with type 2 diabetes (T2D) in different stages: NG (normoglycemic), IFG (impaired fasting glucose), IGT (impaired glucose tolerance), IFG + IGT (impaired fasting glucose plus impaired glucose tolerance), T2D and T2D treated (T2D with a 5-year ongoing treatment). Results By exploring the network topology from the different stages of T2D, we observed that, as the disease progress, the networks lose the association between bacteria. It suggests that the microbial community becomes highly sensitive to perturbations in individuals with T2D. With the purpose to identify those genera that guide this transition, we computationally found keystone taxa (driver nodes) and core genera for a Mexican T2D cohort. Altogether, we suggest a set of genera driving the progress of the T2D in a Mexican cohort, among them Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes, Anaerostipes, and Terrisporobacter. Discussion Based on a network approach, this study suggests a set of genera that can serve as a potential biomarker to distinguish the distinct degree of advances in T2D for a Mexican cohort of patients. Beyond limiting our conclusion to one population, we present a computational pipeline to link ecological networks and clinical stages in T2D, and desirable aim to advance in the field of precision medicine.
Collapse
Affiliation(s)
| | - Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padrón-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
12
|
Holt RR, Barile D, Wang SC, Munafo JP, Arvik T, Li X, Lee F, Keen CL, Tagkopoulos I, Schmitz HH. Chardonnay Marc as a New Model for Upcycled Co-products in the Food Industry: Concentration of Diverse Natural Products Chemistry for Consumer Health and Sensory Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15007-15027. [PMID: 36409321 PMCID: PMC9732887 DOI: 10.1021/acs.jafc.2c04519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Research continues to provide compelling insights into potential health benefits associated with diets rich in plant-based natural products (PBNPs). Coupled with evidence from dietary intervention trials, dietary recommendations increasingly include higher intakes of PBNPs. In addition to health benefits, PBNPs can drive flavor and sensory perceptions in foods and beverages. Chardonnay marc (pomace) is a byproduct of winemaking obtained after fruit pressing that has not undergone fermentation. Recent research has revealed that PBNP diversity within Chardonnay marc has potential relevance to human health and desirable sensory attributes in food and beverage products. This review explores the potential of Chardonnay marc as a valuable new PBNP ingredient in the food system by combining health, sensory, and environmental sustainability benefits that serves as a model for development of future ingredients within a sustainable circular bioeconomy. This includes a discussion on the potential role of computational methods, including artificial intelligence (AI), in accelerating research and development required to discover and commercialize this new source of PBNPs.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Torey Arvik
- Sonomaceuticals, LLC, Santa Rosa, California 95403, United States
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Fanny Lee
- Sonomaceuticals, LLC, Santa Rosa, California 95403, United States
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
| | - Ilias Tagkopoulos
- PIPA, LLC, Davis, California 95616, United States
- Department of Computer Science and Genome Center, USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, Davis, California 95616 United States
| | - Harold H Schmitz
- March Capital US, LLC, Davis, California 95616, United States
- T.O.P., LLC, Davis, California 95616, United States
- Graduate School of Management, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
13
|
Yang C, Han Y, Tian X, Sajid M, Mehmood S, Wang H, Li H. Phenolic composition of grape pomace and its metabolism. Crit Rev Food Sci Nutr 2022; 64:4865-4881. [PMID: 36398354 DOI: 10.1080/10408398.2022.2146048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Grape pomace is the most important residual after wine making, and it is considered to be a very abundant source for the extraction of a wide range of polyphenols. These polyphenols exhibit a variety of bioactivities, such as antioxidant, anti-inflammatory, and anti-cancer. They are also beneficial in alleviating metabolic syndrome and regulating intestinal flora, etc. These health effects are most likely contributed by polyphenol metabolite, which are formed by the grape pomace phenolics after a complex metabolic process in vivo. Therefore, understanding the phenolic composition of grape pomace and its metabolism is the basis for an in-depth study of the biological activity of grape pomace polyphenols. In this paper, we first summarize the composition of phenolics in grape pomace, then review the recent studies on the metabolism of grape pomace phenolics, including changes in phenolics in the gastrointestinal tract, their pharmacokinetics in the systemic circulation, the tissue distribution of phenolic metabolites, and the beneficial effects of metabolites on intestinal health, and finally summarize the effects of human health status and dietary fiber on the metabolism of grape polyphenols. It is expected to provide help for the in-depth research on the metabolism and biological activity of grape pomace polyphenol extracts, and to provide theoretical support for the development and utilization of grape pomace.
Collapse
Affiliation(s)
- Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xuelin Tian
- College of Enology, Northwest A&F University, Yangling, China
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajid Mehmood
- College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
14
|
Lai CC, Pan H, Zhang J, Wang Q, Que QX, Pan R, Lai ZX, Lai GT. Light Quality Modulates Growth, Triggers Differential Accumulation of Phenolic Compounds, and Changes the Total Antioxidant Capacity in the Red Callus of Vitis davidii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13264-13278. [PMID: 36216360 DOI: 10.1021/acs.jafc.2c04620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Light quality is one of the key elicitors that directly affect plant cell growth and biosynthesis of secondary metabolites. In this study, the red callus of spine grape was cultured under nine light qualities (namely, dark, white, red, yellow, blue, green, purple, warm-yellow, and warm-white light). The effects of different light qualities were studied on callus growth, accumulation of phenolic compounds, and total antioxidant capacity of the red callus of spine grape. The results showed that blue and purple light induced increased red coloration in the callus, whereas yellow light induced the greatest callus proliferation. Among all of the light quality treatments, darkness treatment downregulated the contents of phenolic compounds, whereas blue light was the treatment most conducive to the accumulation of total phenolics. White, blue, and purple light induced increased anthocyanin accumulation. Mixed-wavelength light was beneficial to the accumulation of flavonoids. Blue and purple light were conducive to the accumulation of proanthocyanidins. A further study showed that cyanidin 3-glucoside (Cy3G) and peonidin 3-glucoside (P3G) were the main anthocyanin components in the callus, and blue, purple, and white light treatments promoted their accumulation, whereas flavan-3-ols and flavonols were the main components of non-anthocyanin phenolics, and their accumulation changed in response to not only light quality but also culture duration. The total antioxidant capacity of the callus cultures changed significantly in response to different light qualities. These results will provide evidence for an abiotic elicitor strategy to stimulate callus growth and enhance the accumulation of the main phenolic compounds in the red callus of spine grape.
Collapse
Affiliation(s)
- Cheng-Chun Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| | - Hong Pan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jing Zhang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qi Wang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| | - Qiu-Xia Que
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ruo Pan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhong-Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Gong-Ti Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| |
Collapse
|
15
|
Ferrer-Gallego R, Silva P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11102025. [PMID: 36290748 PMCID: PMC9598427 DOI: 10.3390/antiox11102025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Each year, 20 million tons of wine by-products are generated, corresponding to 30% of the total quantity of vinified grapes. Wine by-products are a source of healthy bioactive molecules, such as polyphenols and other molecules (pigments, fibers, minerals, etc.). The abundance of bioactive compounds assures a promising future for nutritional foodstuff production. Wine by-products can be used to fortify aromatized waters and infusions, bread, pasta, dairy products, alcohol, sugary beverages, and processed foods. These innovative products are part of the Mediterranean diet and are of great interest to both human and environmental health. Pre-clinical studies show that consumption of food produced with wine by-products or with their extracts attenuates the inflammatory state and increases antioxidant status. As such, wine by-products provide protective effects against the underlying pathophysiological hallmarks of some chronic diseases such as atherosclerosis, diabetes, hypertension, obesity, and cancer. However, the poor bioavailability warrants further investigation on how to optimize the efficacy of wine by-products, and more clinical trials are also needed. The scientific evidence has validated the uses of the dietary nature of wine by-products and has helped to promote their use as a functional food to prevent chronic human diseases.
Collapse
Affiliation(s)
- Raúl Ferrer-Gallego
- Centro Tecnológico del Vino (VITEC), Ctra. Porrera Km. 1, 43730 Falset, Tarragona, Spain
- Bodega Ferrer Gallego, 46311 Jaraguas, Valencia, Spain
- Department of Ecology, Desertification Research Centre (CIDE-CSIC-UV-GV), 46113 Moncada, Valencia, Spain
| | - Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
16
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
17
|
Granato D. Functional foods to counterbalance low-grade inflammation and oxidative stress in cardiovascular diseases: a multilayered strategy combining food and health sciences. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Bocsan IC, Măgureanu DC, Pop RM, Levai AM, Macovei ȘO, Pătrașca IM, Chedea VS, Buzoianu AD. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022; 10:biomedicines10102337. [PMID: 36289599 PMCID: PMC9598344 DOI: 10.3390/biomedicines10102337] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grape pomace (GP) represents a very reliable source of polyphenols because it could be found globally as a remnant of the wine industry. During the winemaking process, two types of GP are generated: red GP and white GP, according to the produced wine, red or white. Grape pomace represents a viable source of polyphenols, mainly flavanols, procyanidins anthocyanins, and resveratrol which possess antioxidant and anti-inflammatory activities. Multiple differences were observed between red and white GP in terms of their antioxidant and anti-inflammatory activity in both in vitro and in vivo studies. Although most studies are focused on the antioxidant and anti-inflammatory effect of red grape pomace, there are still many variables that need to be taken into consideration, as well as extensive study of the white GP. It was observed that in both in vitro and in vivo studies, the GP polyphenols have a direct antioxidant activity by acting as a free radical scavenger or donating a hydrogen atom. It also possesses an indirect antioxidant and anti-inflammatory activity by reducing mitochondrial reactive oxygen species (ROS) generation, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κβ), and inhibitor of nuclear factor kappa-B kinase subunit beta (Iκκβ) levels or nitrate oxide-4 (NOX4) expression and by increasing the levels of antioxidants enzymes like superoxide dismutase (SOD), catalase (CAT) glutathione reductase (GRx) and glutathione peroxidase(GPx). Besides these activities, many beneficial effects in ischemic heart diseases were also observed, such as the maintenance of the ventricular function as close as possible to normal, and the prevention of infarcted area extension. In this context, this review intends to present the actual knowledge of grape pomace’s potential antioxidant and anti-inflammatory activity in ischemic heart disease, knowledge gathered from existing in vitro and in vivo studies focused on this.
Collapse
Affiliation(s)
- Ioana Corina Bocsan
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| | - Dan Claudiu Măgureanu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Raluca Maria Pop
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
- Correspondence:
| | - Antonia Mihaela Levai
- Faculty of Medicine, Department Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 3-5, Clinicilor Street, 400012 Cluj Napoca, Romania
| | - Ștefan Octavian Macovei
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Ioana Maria Pătrașca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Anca Dana Buzoianu
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| |
Collapse
|
19
|
López-Fernández-Sobrino R, Torres-Fuentes C, Bravo FI, Muguerza B. Winery by-products as a valuable source for natural antihypertensive agents. Crit Rev Food Sci Nutr 2022; 63:7708-7721. [PMID: 35275757 DOI: 10.1080/10408398.2022.2049202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension (HTN) is one of the leading causes of death in the world. Agri-food by-products are emerging as a novel source of natural antihypertensive agents allowing for their valorization and making food and agricultural industries more environmentally friendly. In this regard, wine making process generates large amounts of by-products rich in phenolic compounds that have shown potential to exert several beneficial effects including antihypertensive properties. The aim of this study was to review the blood pressure-lowering effects of winery by-products. In addition, molecular mechanisms involved in their bioactivity were also evaluated. Among the winery by-products, grape seed extracts have widely shown antihypertensive properties in both animal and human studies. Moreover, recent evidence suggests that grape stem, skin and pomace and wine lees may also have great potential to manage HTN, although more studies are needed in order to confirm their potential in humans. Improvement of endothelial dysfunction and reduction of oxidative stress associated with HTN are the main mechanisms involved in the blood pressure-lowering effects of these by-products.
Collapse
Affiliation(s)
- Raúl López-Fernández-Sobrino
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| |
Collapse
|