1
|
Wang L, Yin C, Sun J, Li W, Zou X, Zheng M, Zeng X, Zhao H, Huang W, Tian H. Lipidomic characterization of polar and non-polar lipids in egg yolk and their anti-inflammatory and analgesic activities in zebrafish. Food Chem 2025; 472:142855. [PMID: 39827558 DOI: 10.1016/j.foodchem.2025.142855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
In this study, a technique that combines supercritical fluid extraction with ethanol extraction was employed to effectively fractionate egg yolk extracts into non-polar and polar lipids. By utilizing feature based molecular networking (FBMN) and MS-DIAL database search, 35 glycerolipids were identified in the supercritical extract (SE), and 70 glycerophospholipids in the ethanol extract (EE). Following the identification of lipids, a heatmap was generated using R software to visualize the abundance of lipids across both fractions. The results indicated that glycerolipids in SE primarily included C18:1, C16:0, and C18:2 fatty acids. In contrast, the glycerophospholipids present in EE exhibited a significant proportion of polyunsaturated fatty acids, notably docosahexaenoic acid (DHA, C22:6) and arachidonic acid (C20:4). Further analysis using GC-MS revealed that the combined content of DHA and arachidonic acid in EE exceeded 10 %. Moreover, EE exhibited potent anti-inflammatory activities, whereas SE showed significant analgesic effects in zebrafish model.
Collapse
Affiliation(s)
- Li Wang
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Cong Yin
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Juanjuan Sun
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Li
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyan Zou
- Guangzhou Dreampharm Biotechnology Co., Ltd., Guanghzou 510663, People's Republic of China
| | - Miaojuan Zheng
- Guangzhou Dreampharm Biotechnology Co., Ltd., Guanghzou 510663, People's Republic of China
| | - Xiangheng Zeng
- Guangzhou Dreampharm Biotechnology Co., Ltd., Guanghzou 510663, People's Republic of China
| | - Haishan Zhao
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China..
| | - Weihuan Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Haiyan Tian
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
2
|
Jangra A, Kumar V, Kumar S, Mehra R, Kumar A. Unraveling the Role of Quinoa in Managing Metabolic Disorders: A Comprehensive Review. Curr Nutr Rep 2025; 14:4. [PMID: 39753698 DOI: 10.1007/s13668-024-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets. RECENT FINDINGS Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains. These compounds exhibit various health-promoting properties, such as anti-inflammatory, antioxidant, antidiabetic, and gut microbiota-modulating effects. Furthermore, research indicates that regular quinoa consumption can improve metabolic parameters, including reduced cholesterol levels, blood sugar, fat accumulation, and blood pressure. These findings highlight the potential of quinoa as a dietary tool for preventing and managing metabolic disorders, such as obesity, cardiovascular diseases, diabetes, and gut dysbiosis. The article concludes that quinoa has emerged as a promising solution to food security challenges due to its adaptability to diverse environments and rich nutritional profile. However, some findings are not consistent in the mentioned studies, therefore, well-designed cohort randomized clinical trials with diverse populations are needed. While in vivo studies are necessary to elucidate the specific mechanisms behind the potential benefits of quinoa.
Collapse
Affiliation(s)
- Aarzoo Jangra
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, India
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, 131029, India
| | - Shiv Kumar
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Rahul Mehra
- Symbiosis School of Culinary Arts and Nutritional Sciences, Symbiosis International University, Pune, India.
| | - Akash Kumar
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India.
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, 131029, India.
| |
Collapse
|
3
|
Feng MG, Xiang LH, Li Y, Bai RR, Feng ZM, Zhao ZG, Dou ZY, Zhao WH, Guo H, Lv Y, Zhang J, Liu GX, Cai SQ, Xu F. Existing Forms of Notoginsenoside R 1 in Rats and Their Potential Bioactivities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27248-27264. [PMID: 39611556 DOI: 10.1021/acs.jafc.4c09227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Notoginsenoside R1 (NG-R1) is a primary active constituent in Panax notoginseng, a medicinal and edible plant. It is a saponin with protopanaxatriol (PPT) as its aglycone. UHPLC-ESI-Q-TOF-MS/MS was used to clarify the existing forms of NG-R1 and their distributions in rats. The nomenclature of the ESI MS fragmentation pathway and ions of PPT was proposed for the first time. Totally, 105 metabolites with 89 new metabolites were identified. In terms of their LC-MS data, 7 were accurately identified by comparison with reference compounds, and 41 were clearly identified. Polyhydroxylation, pentosylation, acetylation, glucuronidation, and amino acid conjugation are new metabolic reactions of NG-R1. In total, 69, 48, 47, 43, 24, 15, and 7 metabolites were detected in the large intestine, stomach, small intestine, liver, lungs, kidneys, and heart, respectively. Then, 48 metabolites were predicted to be effective by PharmMapper, and their mechanisms of action on three diseases were predicted by network pharmacology. Finally, the antitumor effects on cell proliferation and the anti-inflammatory effects of the eight compounds were verified by cellular experiments. These results help further elucidate the in vivo existing forms of dammarane-type triterpenoids and form the basis for discovering their effective forms in the future.
Collapse
Affiliation(s)
- Meng-Ge Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Medical College of Tibet University, Lasa 850002, China
| | - Lin-Han Xiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rong-Rong Bai
- Medical College of Tibet University, Lasa 850002, China
| | - Zi-Meng Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhi-Gao Zhao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhi-Yang Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wen-Hui Zhao
- Medical College of Tibet University, Lasa 850002, China
| | - Hui Guo
- Medical College of Tibet University, Lasa 850002, China
| | - Yang Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guang-Xue Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shao-Qing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Medical College of Tibet University, Lasa 850002, China
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Medical College of Tibet University, Lasa 850002, China
| |
Collapse
|
4
|
Liang ZW, Guan YH, Lv Z, Yang SC, Zhang GH, Zhao YH, Zhao M, Chen JW. Optimization of saponin extraction from the leaves of Panax notoginseng and Panax quinquefolium and evaluation of their antioxidant, antihypertensive, hypoglycemic and anti-inflammatory activities. Food Chem X 2024; 23:101642. [PMID: 39113743 PMCID: PMC11304882 DOI: 10.1016/j.fochx.2024.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Panax notoginseng and Panax quinquefolium are important economic plants that utilize dried roots for medicinal and food dual purposes; there is still insufficient research of their stems and leaves, which also contain triterpenoid saponins. The extraction process was developed with a total saponin content of 12.30 ± 0.34% and 12.19 ± 0.64% for P. notoginseng leaves (PNL) and P. quinquefolium leaves (PQL) extracts, respectively. PNL and PQL saponin extracts showed good antioxidant, antihypertensive, hypoglycemic, and anti-inflammatory properties in vitro and RAW264.7 cells. A total of 699 metabolites were identified in PNL and PQL saponin extracts, with the majority being triterpenoid saponins, flavonoids and amino acids. Fourteen ginsenosides, 18 flavonoids or alkaloids, and 16 amino acids were enriched in both saponin extracts. Overall, the utilization of saponins from medicinal plants PNL and PQL has been developed to facilitate systematic research in the functional food and natural product industries.
Collapse
Affiliation(s)
- Zheng-Wei Liang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Yan-Hui Guan
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Zheng Lv
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Sheng-Chao Yang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Guang-Hui Zhang
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Yin-He Zhao
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Ming Zhao
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology & The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, People's Republic of China
| |
Collapse
|
5
|
Ding M, Cheng H, Li X, Li X, Zhang M, Cui D, Yang Y, Tian X, Wang H, Yang W. Phytochemistry, quality control and biosynthesis in ginseng research from 2021 to 2023: A state-of-the-art review concerning advances and challenges. CHINESE HERBAL MEDICINES 2024; 16:505-520. [PMID: 39606254 PMCID: PMC11589329 DOI: 10.1016/j.chmed.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 11/29/2024] Open
Abstract
Panax L. (Araliaceae) has a long history of medicinal and edible use due to its significant tonifying effects, and ginseng research has been a hot topic in natural products research and food science. In continuation of our recent ginseng review, we highlighted the advances in ginseng research from 2021 to 2023 with 157 citations, which exhibited the increasingly systematic, collaborative, and intelligent characteristics. In this review, we firstly updated the progress in phytochemistry involving the ginsenosides and polysaccharides and summarized the researches on the active components. Then, some specific applications by feat of the multidimensional chromatography, mass spectrometry imaging, DNA barcoding, and metabolomics, were analyzed, which could provide rich information supporting the multi-component characterization, authentication, and quality control of ginseng and the versatile products. Finally, the recent biosynthesis studies concerning ginsenosides were retrospected. Additionally, the current challenges and future trends with respect to ginseng research were discussed.
Collapse
Affiliation(s)
| | | | | | - Xue Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dianxin Cui
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yijin Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaojin Tian
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | | | | |
Collapse
|
6
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
7
|
Chen X, Huang L, Zhang M, Lin S, Xie J, Li H, Wang X, Lu Y, Zheng D. Comparison of nanovesicles derived from Panax notoginseng at different size: physical properties, composition, and bioactivity. Front Pharmacol 2024; 15:1423115. [PMID: 39104384 PMCID: PMC11298367 DOI: 10.3389/fphar.2024.1423115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Aim Plant-derived nanovesicles have emerged as potential agents for combating tumors. In this study, we investigated the inhibitory effects of Panax notoginseng-derived nanovesicles (PnNVs) on the proliferation and migration of squamous cell carcinoma. Additionally, we explored the relationship between plant tuber size and the physical properties, composition and bioactivity of these nanovesicles. Methods We isolated PnNVs from Panax notoginseng tubers of varying sizes: small-sized (s_PnNVs), medium-sized (m_PnNVs) and large-sized (l_PnNVs), and evaluated for size, potential, and morphology. Cellular uptake efficiency was assessed using confocal microscopy and flow cytometry. The ability of different PnNVs to inhibit oral squamous cell carcinoma cells was evaluated using plate cloning, CCK8 assay, and scratch healing assay. Off-target metabolomics was used to compare metabolic compounds of different PnNVs. Results Our findings revealed that s_PnNVs exhibited lower potential but had the highest cellular uptake efficiency, whereas m_PnNVs were characterized by the smallest size and lowest cellular uptake efficiency. Notably, m_PnNVs demonstrated the most effective inhibition of squamous cell carcinoma growth and migration. Compositional analyses showed that PnNVs were rich in proteins and contained lower levels of RNA, with l_PnNVs having the highest protein content. Furthermore, untargeted metabolomics analysis revealed a significant increase in the expression of specific antitumour-related metabolites in m_PnNVs compared to s_PnNVs and l_PnNVs. Conclusion Overall, our results underscore the influence of plant tuber size on the bioactivity of the nanovesicles from which they are derived, emphasizing its importance for experimental design and study reproducibility.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Liyu Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Human Anatomy and Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hengyi Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Wu W, Yang D, Sui D, Zhu M, Luo G, Yang Z, Wang Y, Luo H, Ling L, Zhang Z, Wu Y, Feng G, Li H. Efficacy and safety of Pien Tze Huang capsules in patients with herpes zoster: A multicenter, randomized, double-blinded, and placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155453. [PMID: 38452692 DOI: 10.1016/j.phymed.2024.155453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Herpes zoster (HZ) is a common medical condition accompanied by several distressing symptoms, including acute pain. Pien Tze Huang (PZH) is a well-known traditional Chinese medicine (TCM) with numerous pharmacological effects, including antiviral properties, neuroprotection, and immunity regulation. PURPOSE To investigate the efficacy and safety of PZH capsules in patients with HZ. STUDY DESIGN A multicenter, double-blinded, randomized, and placebo-controlled trial from 8 hospitals in 5 cities of China. METHODS Eligible participants were randomly assigned to the PZH capsule and placebo group at a 1:1 ratio. Treatment was conducted for 14 days with a window period of no more than 2 days. For the first 7 days, participants received antiviral drugs combined with PZH capsules (0.6 g/time, 3 times a day) or placebos. For the remaining 7 days, they were only treated with PZH capsules (0.6 g/time, 3 times a day) or placebos. RESULTS We included 222 patients in the full analysis set (FAS), and 187 patients in the per protocol set (PPS). The change of numeric rating scale pain scores from baseline to the seventh day (±1 day) after treatment in the PZH capsule group was statistically superior to the placebo group (FAS: 2.33 vs. 1.71, 97.5%CI: 0.03 ∼ 1.19; PPS: 2.29 vs. 1.51, 97.5%CI: 0.18 ∼ 1.38). In the PPS, there was a significant difference in the time (days) of pain relief between the placebo group and the PZH capsule group (Mean (SD): 5.71 (3.76) vs. 4.69 (3.57), p = 0.046). On the seventh day (±1 day) after treatment, the level of CD8+ cells in the PZH capsule group were higher than those of the placebo group (FAS: Mean (SD): 24.08 (6.81) vs. 21.93 (8.19), p = 0.007; PPS: Mean (SD): 24.26 (6.93) vs. 22.15 (8.51), p = 0.012). The level of cytotoxic lymphocyte cells found similar results on the seventh day (±1 day) (FAS: Mean (SD): 12.17 (4.65) vs. 10.55 (4.15), p = 0.018; PPS: Mean (SD): 12.25 (4.65) vs. 10.11 (3.93), p = 0.002). No serious adverse events were noted and PZH capsules were well tolerated. CONCLUSION PZH capsules confer therapeutic effects on HZ with the TCM symptom of stagnated heat of liver channel by substantially reducing the pain intensity, shortening the time of pain relief as well as regulating the immune function. On the basis of the efficacy and safety profiles, PZH capsules may be a promising complementary therapy for the treatment of HZ.
Collapse
Affiliation(s)
- Wenfeng Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, PR China
| | - Dingquan Yang
- Department of Dermatology, CHINA-JAPAN Friendship Hospital, Beijing, PR China
| | - Daoshun Sui
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, PR China
| | - Minghua Zhu
- Department of Dermatology, The Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, PR China
| | - Guangpu Luo
- Department of Dermatology, The Dermatology Hospital of Southern Medical University, Guangzhou, PR China
| | - Zhonghui Yang
- Department of Dermatology, The Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, PR China
| | - Yongfeng Wang
- Department of Dermatology, The Affiliated Hospital of Shanxi University of Chinese Medicine, Xianyang, PR China
| | - Hong Luo
- Department of Dermatology, The First Hospital of Changsha, Changsha, PR China; Department of Dermatology, The Third People's Hospital of Shenzhen, Shenzhen, PR China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yanmei Wu
- Guangzhou Evidence-Based Medicine Tech Co. Ltd, Guangzhou, PR China
| | - Guoming Feng
- Guangzhou Evidence-Based Medicine Tech Co. Ltd, Guangzhou, PR China
| | - Hongyi Li
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, PR China.
| |
Collapse
|
9
|
Zhou Z, Xiang H, Cheng J, Ban Q, Sun X, Guo M. Effects of Panax notoginseng Saponins Encapsulated by Polymerized Whey Protein on the Rheological, Textural and Bitterness Characteristics of Yogurt. Foods 2024; 13:486. [PMID: 38338621 PMCID: PMC10855543 DOI: 10.3390/foods13030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Panax notoginseng saponins (PNSs) have been used as a nutritional supplement for many years, but their bitter taste limits their application in food formulations. The effects of PNS (groups B, C, and D contained 0.8, 1.0 and 1.2 mg/mL of free PNS, respectively) or Panax notoginseng saponin-polymerized whey protein (PNS-PWP) nanoparticles (groups E, F, and G contained 26.68, 33.35 and 40.03 mg/mL of PNS-PWP nanoparticles, respectively) on the rheological, textural properties and bitterness of yogurt were investigated. Group G yogurt showed a shorter gelation time (23.53 min), the highest elastic modulus (7135 Pa), higher hardness (506 g), higher apparent viscosity, and the lowest syneresis (6.93%) than other groups, which indicated that the yogurt formed a stronger gel structure. The results of the electronic tongue indicated that the bitterness values of group E (-6.12), F (-6.56), and G (-6.27) yogurts were lower than those of group B (-5.12), C (-4.31), and D (-3.79), respectively, which might be attributed to PNS being encapsulated by PWP. The results indicated that PWP-encapsulated PNS could cover the bitterness of PNS and improve the quality of yogurt containing PNS.
Collapse
Affiliation(s)
- Zengjia Zhou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Huiyu Xiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Mingruo Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, University of Vermont, 351 Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Smirnova IE, Galimova ZI, Sapozhnikova TA, Khisamutdinova RY, Thi THN, Kazakova OB. New Dipterocarpol-Based Molecules with α-Glucosidase Inhibitory and Hypoglycemic Activity. Chembiochem 2024; 25:e202300716. [PMID: 37990648 DOI: 10.1002/cbic.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Dammarane triterpenoids are affordable and bioactive natural metabolites with great structural potential, which makes them attractive sources for drug development. The aim of the study was to investigate the potency of new dipterocarpol derivatives for the treatment of diabetes. Two dammaranes (dipterocarpol and its 20(24)-diene derivative) were modified by a Claisen-Schmidt aldol condensation to afford C2(E)-arylidenes in good yields. The majority of the synthesized compounds exhibited an excellent-to-moderate inhibitory effect toward α-glucosidase (from S. saccharomyces), among them eight compounds showed IC50 values less than 10 μM. 3-Oxo-dammarane-2(E)-benzylidenes (holding p-hydroxy- 3 l and p-carbonyl- 3 m substituents) demonstrated the most potent α-glucosidase inhibition with IC50 0.753 and 0.204 μM, being 232- and 857-times more active than acarbose (IC50 174.90 μM), and a high level of NO inhibition in Raw 264.7 cells with IC50 of 1.75 and 4.57 μM, respectively. An in vivo testing of compound 3 m (in a dose of 20 mg/kg) on a model of streptozotocin-induced T1DM in rats showed a pronounced hypoglycemic activity, the ability to reduce effectively the processes of lipid peroxidation in liver tissue and decrease the excretion of glucose and pyruvic acid in the urine. Compound 3 m reduced the death of diabetic rats and preserved their motor activity.
Collapse
Affiliation(s)
- Irina E Smirnova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Zarema I Galimova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Tatyana A Sapozhnikova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | | | - Thu Ha Nguyen Thi
- Institute of Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| |
Collapse
|
11
|
Li H, Wang YG, Chen TF, Gao YH, Song L, Yang YF, Gao Y, Huo W, Zhang GP. Panax notoginseng saponin alleviates pulmonary fibrosis in rats by modulating the renin-angiotensin system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116979. [PMID: 37532070 DOI: 10.1016/j.jep.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a chronic, progressive, and often fatal interstitial lung disease. Traditional Chinese medicine formulations and their active ingredients have shown potential in the treatment of PF. Panax notoginseng saponin (PNS) is extracted from the widely used traditional Chinese medicinal herb Panax notoginseng (Burkill) F. H. Chen, exhibiting therapeutic effects in pulmonary diseases treatment. AIM OF THE STUDY This study aimed to investigate the effects and elucidate possible potential mechanisms of PNS on bleomycin (BLM)-induced PF in rats. MATERIALS AND METHODS PF was induced in rats by intratracheal administration of bleomycin (BLM, 5 mg/kg). After disease model induction, the rats were treated with PNS (50, 100, or 200 mg/kg per day) or pirfenidone (PFD, 50 mg/kg per day) for 28 days. Lung function, histopathological changes, collagen deposition, and E- and N-cadherin levels in lung tissue were evaluated. The mechanism of action of PNS was investigated using tandem mass tag-based quantitative proteomics analysis. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed to verify the proteomic results. RESULTS PNS treatment improved lung function, ameliorated the BLM-induced increase in the lung coefficient, attenuated the degree of alveolar inflammation and fibrosis, and reduced the elevated collagen level in PF rats. PNS treatment also down-regulated the expression of N-cadherin while up-regulating the expression of E-cadherin. Proteomic and bioinformatic analyses revealed that the renin-angiotensin system (RAS) was closely related to the therapeutic effect of PNS. Immunohistochemistry, Western blot, and ELISA results indicated that PNS exerted its anti-fibrotic effect via regulation of the balance between the angiotensin-converting enzyme (ACE)-angiotensin (Ang)II-AngII receptor type 1 (AT1R) and ACE2-Ang(1-7)-MasR axes. CONCLUSIONS PNS ameliorates BLM-induced PF in rats by modulating the RAS homeostasis, and is a new potential therapeutic agent for PF.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng-Fei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yun-Hang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yi-Fei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wang Huo
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Guang-Ping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| |
Collapse
|
12
|
Chen J, Lu P, Liu J, Yang L, Li Y, Chen Y, Wang Y, Wan J, Zhao Y. 20(S)- Protopanaxadiol saponins isolated from Panax notoginseng target the binding of HMGB1 to TLR4 against inflammation in experimental ulcerative colitis. Phytother Res 2023; 37:4690-4705. [PMID: 37424151 DOI: 10.1002/ptr.7938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
Ulcerative colitis (UC) has emerged as a global healthcare issue due to high prevalence and unsatisfying therapeutic measures. 20(S)- Protopanaxadiol saponins (PDS) from Panax notoginseng with anti-inflammatory properties is a potential anti-colitis agent. Herein, we explored the effects and mechanisms of PDS administration on experimental murine UC. Dextran sulfate sodium-induced murine UC model was employed to investigate anti-colitis effects of PDS, and associated mechanisms were further verified in HMGB1-exposed THP-1 macrophages. Results indicated that PDS administration exerted ameliorative effects against experimental UC. Moreover, PDS administration remarkably downregulated mRNA expressions and productions of related pro-inflammatory mediators, and reversed elevated expressions of proteins related to NLRP3 inflammasome after colitis induction. Furthermore, administration with PDS also suppressed the expression and translocation of HMGB1, interrupting the downstream TLR4/NF-κB pathway. In vitro, ginsenoside CK and 20(S)-protopanaxadiol, the metabolites of PDS, exhibited greater potential in anti-inflammation, and intervened with the TLR4-binding domain of HMGB1 predictably. Expectedly, ginsenoside CK and 20(S)-protopanaxadiol administrations inhibited the activation of TLR4/NF-κB/NLRP3 inflammasome pathway in HMGB1-exposed THP-1 macrophages. Summarily, PDS administration attenuated inflammatory injury in experimental colitis by blocking the binding of HMGB1 to TLR4, majorly attributed to the antagonistic efficacies of ginsenoside CK and 20(S)-protopanaxadiol.
Collapse
Affiliation(s)
- Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Pengde Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Jiayue Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yanling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Jianbo Wan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
13
|
Zhou F, Peterson T, Fan Z, Wang S. The Commonly Used Stabilizers for Phytochemical-Based Nanoparticles: Stabilization Effects, Mechanisms, and Applications. Nutrients 2023; 15:3881. [PMID: 37764665 PMCID: PMC10534333 DOI: 10.3390/nu15183881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Phytochemicals, such as resveratrol, curcumin, and quercetin, have many benefits for health, but most of them have a low bioavailability due to their poor water solubility and stability, quick metabolism, and clearance, which restricts the scope of their potential applications. To overcome these issues, different types of nanoparticles (NPs), especially biocompatible and biodegradable NPs, have been developed. NPs can carry phytochemicals and increase their solubility, stability, target specificity, and oral bioavailability. However, NPs are prone to irreversible aggregation, which leads to NP instability and loss of functions. To remedy this shortcoming, stabilizers like polymers and surfactants are incorporated on NPs. Stabilizers not only increase the stability of NPs, but also improve their characteristics. The current review focused on discussing the state of the art in research on synthesizing phytochemical-based NPs and their commonly employed stabilizers. Furthermore, stabilizers in these NPs were also discussed in terms of their applications, effects, and underlying mechanisms. This review aimed to provide more references for developing stabilizers and NPs for future research.
Collapse
Affiliation(s)
- Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| | - Tiffany Peterson
- College of Integrative Sciences and Arts, Arizona State University, Phoenix, AZ 85004, USA;
| | - Zhaoyang Fan
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| |
Collapse
|
14
|
Okuno K, Pratama MY, Li J, Tokunaga M, Wang X, Kinugasa Y, Goel A. Ginseng mediates its anticancer activity by inhibiting the expression of DNMTs and reactivating methylation-silenced genes in colorectal cancer. Carcinogenesis 2023; 44:394-403. [PMID: 37137336 PMCID: PMC10414140 DOI: 10.1093/carcin/bgad025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/26/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
Developing safe and effective therapeutic modalities remains a critical challenge for improving the prognosis of patients with colorectal cancer (CRC). In this regard, targeting epigenetic regulation in cancers has recently emerged as a promising therapeutic approach. Since several natural compounds have recently been shown to be important epigenetic modulators, we hypothesized that Ginseng might exert its anticancer activity by regulating DNA methylation alterations in CRC. In this study, a series of cell culture studies were conducted, followed by their interrogation in patient-derived 3D organoid models to evaluate Ginseng's anticancer activity in CRC. Genome-wide methylation alterations were interrogated by undertaking MethylationEpic BeadChip microarrays. First, 50% inhibitory concentrations (IC50) were determined by cell viability assays, and subsequent Ginseng treatment demonstrated a significant anticancer effect on clonogenicity and cellular migration in CRC cells. Treatment with Ginseng potentiated cellular apoptosis through regulation of apoptosis-related genes in CRC cells. Furthermore, Ginseng treatment downregulated the expression of DNA methyltransferases (DNMTs) and decreased the global DNA methylation levels in CRC cells. The genome-wide methylation profiling identified Ginseng-induced hypomethylation of transcriptionally silenced tumor suppressor genes. Finally, cell culture-based findings were successfully validated in patient-derived 3D organoids. In conclusion, we demonstrate that Ginseng exerts its antitumorigenic potential by regulating cellular apoptosis via the downregulation of DNMTs and reversing the methylation status of transcriptionally silenced genes in CRC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Muhammad Yogi Pratama
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Jiang Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
16
|
Liu C, Zuo Z, Xu F, Wang Y. Study of the suitable climate factors and geographical origins traceability of Panax notoginseng based on correlation analysis and spectral images combined with machine learning. FRONTIERS IN PLANT SCIENCE 2023; 13:1009727. [PMID: 36825249 PMCID: PMC9941628 DOI: 10.3389/fpls.2022.1009727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The cultivation and sale of medicinal plants are some of the main ways to meet the increased market demand for plant-based drugs. Panax notoginseng is a widely used Chinese medicinal material. The growth and accumulation of bioactive constituents mainly depend on a satisfactory growing environment. Additionally, the occurrence of market fraud means that care should be taken when purchasing. METHODS In this study, we report the correlation between saponins and climate factors based on high performance liquid chromatography (HPLC), and evaluate the influence of climate factors on the quality of P. notoginseng. In addition, the synchronous two-dimensional correlation spectroscopy (2D-COS) images of near infrared (NIR) data combined with the deep learning model were applied to traceability of geographic origins of P. notoginseng at two different levels (district and town levels). RESULTS The results indicated that the contents of saponins in P. notoginseng are negatively related to the annual mean temperature and the temperature annual range. A lower annual mean temperature and temperature annual range are favorable for the content accumulation of saponins. Additionally, high annual precipitation and high humidity are conducive to the content accumulation of Notoginsenoside R1 (NG-R1), Ginsenosides Rg1 (G-Rg1), and Ginsenosides Rb1 (G-Rb1), while Ginsenosides Rd (G-Rd), this is not the case. Regarding geographic origins, classifications at two different levels could be successfully distinguished through synchronous 2D-COS images combined with the residual convolutional neural network (ResNet) model. The model accuracy of the training set, test set, and external validation is achieved at 100%, and the cross-entropy loss function curves are lower. This demonstrated the potential feasibility of the proposed method for P. notoginseng geographic origin traceability, even if the distance between sampling points is small. DISCUSSION The findings of this study could improve the quality of P. notoginseng, provide a reference for cultivating P. notoginseng in the future and alleviate the occurrence of market fraud.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Collge of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Furong Xu
- Collge of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
17
|
Jarerattanachat V, Boonarkart C, Hannongbua S, Auewarakul P, Ardkhean R. In silico and in vitro studies of potential inhibitors against Dengue viral protein NS5 Methyl Transferase from Ginseng and Notoginseng. J Tradit Complement Med 2023; 13:1-10. [PMID: 36685072 PMCID: PMC9845645 DOI: 10.1016/j.jtcme.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 μM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.
Collapse
Affiliation(s)
- Viwan Jarerattanachat
- NSTDA Supercomputer Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuta Ardkhean
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
18
|
Zhong P, Xiu Y, Zhou K, Zhao H, Wang N, Zheng F, Yu S. Characterization of a novel thermophilic beta-glucosidase from Thermotoga sp. and its application in the transformation of notoginsenoside R1. 3 Biotech 2022; 12:289. [PMID: 36276459 PMCID: PMC9508303 DOI: 10.1007/s13205-022-03352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022] Open
Abstract
A novel β-glucosidase (Thglu3) was identified from Thermotoga sp. which had biotransformation activity for notoginsenoside R1 (NR-R1). Sequence analysis of Thglu3 revealed that it could be classified into glycoside hydrolase family 3 (GH3). The gene encoding a 719-amino acid protein was cloned and expressed in Escherichia coli. The recombinant enzyme was purified, and its molecular weight was approximately 81 kDa. The recombinant Thglu3 exhibited an optimal activity at 75 °C and pH 6.4. The β-glucosidase had high selectivity for cleaving the outer glucose moiety at the C20 position of NR-R1, which produced the more pharmacologically active notoginsenoside R2 (NR-R2). Under the optimal reaction conditions for gram-scale production, 30 g NR-R1 was transformed to NR-R2 using 20 g crude enzyme at pH 6.4 and 75 °C within 1 h with a molar yield of 93%. This study was the first report of the highly efficient and selective gram-scale transformation of NR-R2 from NR-R1 by a thermophilic β-glucosidase.
Collapse
Affiliation(s)
- Peng Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Yang Xiu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Kailu Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Huanxi Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Nan Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Shanshan Yu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
19
|
Wu Y, Meng H, Qiao B, Li N, Zhang Q, Jia W, Xing H, Li Y, Yuan J, Yang Z. Yifei Sanjie Formula Treats Chronic Obstructive Pulmonary Disease by Remodeling Pulmonary Microbiota. Front Med (Lausanne) 2022; 9:927607. [PMID: 35847812 PMCID: PMC9277004 DOI: 10.3389/fmed.2022.927607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common pulmonary diseases. Evidence suggests that dysbiosis of pulmonary microbiota leads to the COPD pathological process. Yifei Sanjie Formula (YS) is widely used to treat diseases in respiratory systems, yet little is known about its mechanisms. In the present study, we first established the fingerprint of YS as the background for UHPLC-QTOF-MS. Components were detected, including alkaloids, amino acid derivatives, phenylpropanoids, flavonoids, terpenoids, organic acids, phenols, and the like. The therapeutic effect of YS on COPD was evaluated, and the pulmonary function and ventilatory dysfunction (EF50, TV, and MV) were improved after the administration of YS. Further, the influx of lymphocytes was inhibited in pulmonary parenchyma, accompanied by down-regulation of inflammation cytokines via the NLRP3/caspase-1/IL-1β signaling pathway. The severity of pulmonary pathological damage was reversed. Disturbed pulmonary microbiota was discovered to involve an increased relative abundance of Ralstonia and Mycoplasma and a decreased relative abundance of Lactobacillus and Bacteroides in COPD animals. However, the subversive effect was shown. The abundance and diversity of pulmonary microflora were remodeled, especially increasing beneficial genua Lactobacillus and Bacteroides, as well as downregulating pathogenic genua Ralstonia and Mycoplasma in the YS group. Environmental factor correlation analysis showed that growing pulmonary microbiota was positively correlated with the inflammatory factor, referring to Ralstonia and Mycoplasma, as well as negatively correlated with the inflammatory factor, referring to Lactobacillus and Bacteroides. These results suggest that the effects of YS involved remodeling lung microbes and anti-inflammatory signal pathways, revealing that intervention microbiota and an anti-inflammatory may be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Yueying Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Hui Meng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Bo Qiao
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Ning Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qiang Zhang
- Basic Medical School, Shanghai University of Chinese Medicine, Shanghai, China
| | - Wenqing Jia
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Haijing Xing
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Yuqing Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Jiali Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- Jiali Yuan
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- *Correspondence: Zhongshan Yang
| |
Collapse
|
20
|
Ma X, Zhang X, Kong Y, Su B, Wu L, Liu D, Wang X. Therapeutic effects of Panax notoginseng saponins in rheumatoid arthritis: network pharmacology and experimental validation. Bioengineered 2022; 13:14438-14449. [PMID: 36694450 PMCID: PMC9995134 DOI: 10.1080/21655979.2022.2086379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Panax notoginseng saponins (PNS) have been reported to have good anti-inflammatory effects. However, the anti-inflammatory effect mechanism in rheumatoid arthritis (RA) remains unknown. The focus of this research was to investigate the molecular mechanism of PNS in the treatment of RA. The primary active components of PNS were tested utilizing the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Analysis Platform based on oral bioavailability and drug-likeness. The target databases for knee osteoarthritis were created using GeneCards and Online Mendelian Inheritance in Man (OMIM). The visual interactive network structure 'active component - action target - illness' was created using Cytoscape software. A protein interaction network was built, and associated protein interactions were analyzed using the STRING database. The key targets were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analyses. The effects of PNS on cell growth were studied in human umbilical vein endothelial cells (HUVECs) treated with various doses of PNS, and the optimum concentration of PNS was identified. PNS was studied for its implication on angiogenesis and migration. The active components of PNS had 114 common targets, including cell metabolism and apoptosis, according to the network analysis. The therapeutic effects of the PNS components were suggested to be mediated through apoptotic and cytokine signaling pathways. In vitro, PNS therapy boosted HUVEC proliferation. Wound healing, Boyden chamber and tube formation tests suggested that PNS may increase HUVEC activity and capillary-like tube branching. This study clarified that for the treatment of RA, PNS has multisystem, multicomponent, and multitargeted properties.
Collapse
Affiliation(s)
- Xinnan Ma
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuanhang Kong
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Su
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Leilei Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daqian Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|