1
|
Lee HJ, Maruoka K. Asymmetric phase-transfer catalysis. Nat Rev Chem 2024; 8:851-869. [PMID: 39385042 DOI: 10.1038/s41570-024-00642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 10/11/2024]
Abstract
Over the past three decades, chiral phase-transfer catalysts (PTCs) have emerged as highly successful organocatalysts in a diverse range of asymmetric reactions. A substantial number of chiral PTCs have now already been discovered and utilized in dependable routes to enantioenriched products. These extend beyond the classical cationic PTCs with the emergence of anionic phase-transfer catalysis and hydrogen-bonding phase-transfer catalysis providing new asymmetric synthetic approaches. Nevertheless, the application level of chiral PTCs in both academic and industrial processes is below our expectation. This Review highlights the notable advances in chiral PTCs, including challenges, limitations and efforts to overcome them. Following this, the potential for sustainable chiral PTCs is described with a focus on using photocatalysed, flow and electrochemical synthesis.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Kunsan National University, Gunsan, Republic of Korea.
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Ozgun U, Genc HN. Catalytic Performance of Chiral Tetraaza-Bridged Calix[4]arene[2]triazine Derivatives for Enantioselective Michael Reactions. Chirality 2024; 36:e23711. [PMID: 39267303 DOI: 10.1002/chir.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/17/2024]
Abstract
Novel chiral tetraaza-bridged calix[4]arene[2]triazine-based organocatalysts were synthesized and used for catalytic asymmetric Michael reaction of acetylacetone to various aromatic nitrostyrenes. Chiral subunits (R)- and (S)-1,2,3,4-tetrahydro-1-naphthylamine were attached to the tetraaza-bridged calix[4]arene[2]triazine platform in both enantiomeric forms. The R configuration of the major enantiomer of the Michael product was obtained when 3a was used as catalyst, and the S configuration was obtained when 3b was used as catalyst. This indicated that the configuration of the Michael product was controlled by the chiral calixarene moiety. The Michael adducts were obtained in excellent yields (91%) and enantioselectivities (98%).
Collapse
Affiliation(s)
- Ummu Ozgun
- Department of Chemistry, A. K. Education Faculty, Necmettin Erbakan University, Konya, Türkiye
- Faculty of Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Hayriye Nevin Genc
- Department of Science Education, A. K. Education Faculty, Necmettin Erbakan University, Konya, Türkiye
| |
Collapse
|
3
|
Xie P, Lan J, Zhou J, Hu Z, Cui J, Qu G, Yuan B, Sun Z. Co-immobilization of amine dehydrogenase and glucose dehydrogenase for the biosynthesis of (S)-2-aminobutan-1-ol in continuous flow. BIORESOUR BIOPROCESS 2024; 11:70. [PMID: 39023666 PMCID: PMC11258105 DOI: 10.1186/s40643-024-00786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Reductive amination by amine dehydrogenases is a green and sustainable process that produces only water as the by-product. In this study, a continuous flow process was designed utilizing a packed bed reactor filled with co-immobilized amine dehydrogenase wh84 and glucose dehydrogenase for the highly efficient biocatalytic synthesis of chiral amino alcohols. The immobilized amine dehydrogenase wh84 exhibited better thermo-, pH and solvent stability with high activity recovery. (S)-2-aminobutan-1-ol was produced in up to 99% conversion and 99% ee in the continuous flow processes, and the space-time yields were up to 124.5 g L-1 d-1. The continuous reactions were also extended to 48 h affording up to 91.8% average conversions. This study showcased the important potential to sustainable production of chiral amino alcohols in continuous flow processes.
Collapse
Affiliation(s)
- Pengcheng Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jin Lan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jingshuan Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, China
| | - Jiandong Cui
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
4
|
Satapathy S, Kumar S, Kurmi BD, Gupta GD, Patel P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024; 36:e23698. [PMID: 38961803 DOI: 10.1002/chir.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
Collapse
Affiliation(s)
- Sourabh Satapathy
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
5
|
Weiser M, Pálvölgyi Á, Weil M, Bica-Schröder K. Continuous Enantioselective α-Alkylation of Ketones via Direct Photoexcitation. J Org Chem 2024; 89:8906-8914. [PMID: 38856707 PMCID: PMC11197082 DOI: 10.1021/acs.joc.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Motivated by the scarcity of enantioselective direct intermolecular α-alkylation reactions of ketones with simple alkyl halides, we report a photo-organocatalytic process to access diethyl 2-(2-oxocyclohexyl)malonate and derivatives in good yield and enantioselectivity. The reaction design is based on highly abundant and nature-derived 9-amino-9-deoxy-epi-cinchona alkaloids to activate ketones as transient secondary enamines, which exist unfavorably in equilibrium with imines. These condensed species can serve as powerful photoinitiators via direct photoexcitation. This concept provides access to both enantiomeric antipodes. In addition to introducing an uncomplicated batch-optimized procedure, we investigated the feasibility and limitations of implementing the reaction in continuous flow, thus enabling to obtain diethyl 2-(2-oxocyclohexyl)malonate with a productivity of 47 μmol/h and 84% enantioselectivity.
Collapse
Affiliation(s)
- Michael Weiser
- Institute
of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
| | | | - Matthias Weil
- Institute
of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria
| | | |
Collapse
|
6
|
Al Maqbali AS, Al Rasbi NK, Zoghaib WM, Sivakumar N, Robertson CC, Shongwe MS, Grzegorzek N, Abdel-Jalil RJ. Stereoselective Asymmetric Syntheses of Molecules with a 4,5-Dihydro-1 H-[1,2,4]-Triazoline Core Possessing an Acetylated Carbohydrate Appendage: Crystal Structure, Spectroscopy, and Pharmacology. Molecules 2024; 29:2839. [PMID: 38930904 PMCID: PMC11206253 DOI: 10.3390/molecules29122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8a-j) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed.
Collapse
Affiliation(s)
- Anwaar S. Al Maqbali
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nawal K. Al Rasbi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Wajdi M. Zoghaib
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman;
| | | | - Musa S. Shongwe
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Norbert Grzegorzek
- Institute of Organic Chemistry, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, 72076 Tübingen, Germany;
| | - Raid J. Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| |
Collapse
|
7
|
Wang ZH, Fu XH, Li Q, You Y, Yang L, Zhao JQ, Zhang YP, Yuan WC. Recent Advances in the Domino Annulation Reaction of Quinone Imines. Molecules 2024; 29:2481. [PMID: 38893357 PMCID: PMC11173866 DOI: 10.3390/molecules29112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Quinone imines are important derivatives of quinones with a wide range of applications in organic synthesis and the pharmaceutical industry. The attack of nucleophilic reagents on quinone imines tends to lead to aromatization of the quinone skeleton, resulting in both the high reactivity and the unique reactivity of quinone imines. The extreme value of quinone imines in the construction of nitrogen- or oxygen-containing heterocycles has attracted widespread attention, and remarkable advances have been reported recently. This review provides an overview of the application of quinone imines in the synthesis of cyclic compounds via the domino annulation reaction.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Qun Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China;
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| |
Collapse
|
8
|
Kayukova L, Vologzhanina A. A New 2-Aminospiropyrazolylammonium Cation with Possible Uses in the Topical Areas of Ionic Liquids. Molecules 2024; 29:2326. [PMID: 38792187 PMCID: PMC11124009 DOI: 10.3390/molecules29102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Based on the fact that 2-aminospiropyrazolinium compounds and structurally related azoniaspiro compounds belong, in a broad sense, to the class of ionic liquids, we have reviewed them and studied their practical applications. To search for possible uses of a new 2-aminospiropyrazolinium compounds, it is necessary to undertake a comparison with the related class of azoniaspiro compounds based on available information. The structures of the well-studied class of azoniaspiro compounds and the related but little-studied class of 2-aminospiropyrazolinium have rigid frameworks, limited conformational freedom, and a salt nature. These properties give them the ability to organize the nearby molecular space and enable the structure-forming ability of azoniaspiro compounds in the synthesis of zeolites, as well as the ability to act as phase-transfer catalysts and have selective biological effects. Additionally, these characteristics enable their ability to act as electrolytes and serve as materials for anion exchange membranes in fuel cells and water electrolyzers. Thus, the well-studied properties of azoniaspiro compounds as phase-transfer catalysts, structure-directing agents, electrolytes, and materials for membranes in power sources would encourage the study of the similar properties of 2-aminospiropyrazolinium compounds, which we have studied in relation to in vitro antitubercular, antidiabetic, and antimicrobial activities.
Collapse
Affiliation(s)
- Lyudmila Kayukova
- Laboratory of Chemistry of Synthetic and Natural Drug Substances, JSC A.B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov Str., 050010 Almaty, Kazakhstan
| | - Anna Vologzhanina
- X-ray Diffraction Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., B-334, 119334 Moscow, Russia;
| |
Collapse
|
9
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Chetty LC, Kruger HG, Arvidsson PI, Naicker T, Govender T. Investigating the efficacy of green solvents and solvent-free conditions in hydrogen-bonding mediated organocatalyzed model reactions. RSC Adv 2024; 14:7992-7998. [PMID: 38454950 PMCID: PMC10918449 DOI: 10.1039/d4ra00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we have delved into various reactions conducted using green solvents or under solvent-free conditions, employing hydrogen bonding organocatalysis to advance more sustainable practices in chemical synthesis. The outcomes suggest that cyclopentyl methyl ether could potentially replace non-polar organic solvents such as hexane and toluene with comparable enantioselectivity and yields. The non-polar nature of liquefied or supercritical CO2 restricts its application to reactions that require non-polar solvents. Furthermore, pursuing solvent-free conditions, even without liquid substrates, might result in similar conversion rates with reduced catalyst loading. These findings highlight the potential of exploring solvent-free conditions when enantioselectivity is not of concern. Based on the results, solvent-free conditions and bio-based solvents can serve as viable alternatives to conventional organic solvents without compromising performance. This is expected to influence the way chemists approach reaction optimisation within method development in the field, fostering a broader adoption of environmentally friendly approaches.
Collapse
Affiliation(s)
- Lloyd C Chetty
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
- Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm Sweden
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
| | - Thavendran Govender
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3886 South Africa
| |
Collapse
|
11
|
Shaikh MA, Ubale AS, Gnanaprakasam B. Amberlyst-A26-Mediated Corey-Chaykovsky Cyclopropanation of 9-Alkylidene-9 H-fluorene under Continuous Process. J Org Chem 2024; 89:2283-2293. [PMID: 38316018 DOI: 10.1021/acs.joc.3c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein, we have developed a continuous-process for the direct cyclopropanation of various alkenes nonconjugated with carbonyl using trimethylsulfoxonium iodide as a methylene source via the Corey-Chaykovsky cyclopropanation reaction in the presence of Amberlyst-A26 as a heterogeneous base. Several 9-alkylidene-9H-fluorene derivatives successfully undergo Corey-Chaykovsky cyclopropanation to afford spiro[cyclopropane-1,9'-fluorene] in excellent yields under the continuous-process module. Furthermore, continuous process for the cyclopropanation of 3-benzylideneindolin-2-one derivatives using Amberlyst-A26 as a heterogeneous base has been described, which afford spiro[cyclopropane-1,3'-indolin]-2'-one derivatives.
Collapse
Affiliation(s)
- Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
12
|
Maestro A, Nagy BS, Ötvös SB, Kappe CO. A Telescoped Continuous Flow Enantioselective Process for Accessing Intermediates of 1-Aryl-1,3-diols as Chiral Building Blocks. J Org Chem 2023; 88:15523-15529. [PMID: 37844195 PMCID: PMC10629223 DOI: 10.1021/acs.joc.3c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A telescoped continuous flow process is reported for the enantioselective synthesis of chiral precursors of 1-aryl-1,3-diols, intermediates in the synthesis of ezetimibe, dapoxetine, duloxetine, and atomoxetine. The two-step sequence consists of an asymmetric allylboration of readily available aldehydes using a polymer-supported chiral phosphoric acid catalyst to introduce asymmetry, followed by selective epoxidation of the resulting alkene. The process is highly stable for at least 7 h and represents a transition-metal free enantioselective approach to valuable 1-aryl-1,3-diols.
Collapse
Affiliation(s)
- Aitor Maestro
- Department of Organic Chemistry I, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
| | - Bence S Nagy
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), A-8010 Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), A-8010 Graz, Austria
| |
Collapse
|
13
|
Somsri S, Suwankaisorn B, Yomthong K, Srisuwanno W, Klinyod S, Kuhn A, Wattanakit C. Highly Enantioselective Synthesis of Pharmaceuticals at Chiral-Encoded Metal Surfaces. Chemistry 2023; 29:e202302054. [PMID: 37555292 DOI: 10.1002/chem.202302054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Enantioselective catalysis is of crucial importance in modern chemistry and pharmaceutical science. Although various concepts have been used for the development of enantioselective catalysts to obtain highly pure chiral compounds, most of them are based on homogeneous catalytic systems. Recently, we successfully developed nanostructured metal layers imprinted with chiral information, which were applied as electrocatalysts for the enantioselective synthesis of chiral model compounds. However, so far such materials have not been employed as heterogeneous catalysts for the enantioselective synthesis of real pharmaceutical products. In this contribution, we report the asymmetric synthesis of chiral pharmaceuticals (CPs) with chiral imprinted Pt-Ir surfaces as a simple hydrogenation catalyst. By fine-tuning the experimental parameters, a very high enantioselectivity (up to 95 % enantiomeric excess) with good catalyst stability can be achieved. The designed materials were also successfully used as catalytically active stationary phases for the continuous asymmetric flow synthesis of pharmaceutical compounds. This illustrates the possibility of producing real chiral pharmaceuticals at such nanostructured metal surfaces for the first time.
Collapse
Affiliation(s)
- Supattra Somsri
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Krissanapat Yomthong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wanmai Srisuwanno
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sorasak Klinyod
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
14
|
Zhang B, Mathoor A, Junkers T. High Throughput Multidimensional Kinetic Screening in Continuous Flow Reactors. Angew Chem Int Ed Engl 2023; 62:e202308838. [PMID: 37537139 DOI: 10.1002/anie.202308838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
An automated high throughput multidimensional reaction screening platform based on an inline Fourier-transform infrared spectroscopy is presented. By combining flow chemistry, machine automation and inline analysis, the platform is able to screen reactions in multidimensions (residence time, monomer concentration, degree of polymerization, reaction temperature and monomer conversion) rapidly and efficiently way. Kinetic data libraries associated with high data precision (absolute error <4 %), high reproducibility and high data density are built with ease from the platform. To test the method, we screened the reversible addition-fragmentation chain transfer polymerization of methyl acrylate in unmatched detail, and the ring opening metathesis polymerization of methyl-5-norbornene-2-carboxylate. The method we introduce is a key step in providing "big data" for data driven research in the future, and already at present allows for precise prediction of reaction outcomes within the high-dimensional chemical parameter space that is screened.
Collapse
Affiliation(s)
- Bo Zhang
- Polymer Reaction Design group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC-3800, Australia
| | - Ansila Mathoor
- Polymer Reaction Design group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC-3800, Australia
| | - Tanja Junkers
- Polymer Reaction Design group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC-3800, Australia
| |
Collapse
|
15
|
Yang H, Yu H, Stolarzewicz IA, Tang W. Enantioselective Transformations in the Synthesis of Therapeutic Agents. Chem Rev 2023; 123:9397-9446. [PMID: 37417731 DOI: 10.1021/acs.chemrev.3c00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The proportion of approved chiral drugs and drug candidates under medical studies has surged dramatically over the past two decades. As a consequence, the efficient synthesis of enantiopure pharmaceuticals or their synthetic intermediates poses a profound challenge to medicinal and process chemists. The significant advancement in asymmetric catalysis has provided an effective and reliable solution to this challenge. The successful application of transition metal catalysis, organocatalysis, and biocatalysis to the medicinal and pharmaceutical industries has promoted drug discovery by efficient and precise preparation of enantio-enriched therapeutic agents, and facilitated the industrial production of active pharmaceutical ingredient in an economic and environmentally friendly fashion. The present review summarizes the most recent applications (2008-2022) of asymmetric catalysis in the pharmaceutical industry ranging from process scales to pilot and industrial levels. It also showcases the latest achievements and trends in the asymmetric synthesis of therapeutic agents with state of the art technologies of asymmetric catalysis.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanxiao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Izabela A Stolarzewicz
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
16
|
Franco M, Silva RC, Rosa GHS, Flores LM, de Oliveira KT, de Assis FF. Synthesis of the Brivaracetam Employing Asymmetric Photocatalysis and Continuous Flow Conditions. ACS OMEGA 2023; 8:23008-23016. [PMID: 37396260 PMCID: PMC10308561 DOI: 10.1021/acsomega.3c02134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
An original total synthesis of the antiepileptic drug brivaracetam (BRV) is reported. The key step in the synthesis consists of an enantioselective photochemical Giese addition, promoted by visible-light and the chiral bifunctional photocatalyst Δ-RhS. Continuous flow conditions were employed to improve the efficiency and allow an easy scale-up of the enantioselective photochemical reaction step. The intermediate obtained from the photochemical step was converted into BRV by two different pathways, followed by one alkylation and amidation, thus giving the desired active pharmaceutical ingredients (API) in 44% overall yield, 9:1 diastereoisomeric ratio (dr) and >99:1 enantiomeric ratio (er).
Collapse
Affiliation(s)
- Marcelo
S. Franco
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Rodrigo C. Silva
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Gabriel H. S. Rosa
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Lara M. Flores
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Kleber T. de Oliveira
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Francisco F. de Assis
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
17
|
Sagmeister P, Prieschl M, Kaldre D, Gadiyar C, Moessner C, Sedelmeier J, Williams JD, Kappe CO. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 1: Azidation and [3 + 2] Cycloaddition. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Prieschl M, Sagmeister P, Moessner C, Sedelmeier J, Williams JD, Kappe CO. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 2: Cyclization, Chlorination, and Amination. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
19
|
Kumar Sharma S. The Importance of Organocatalysis (Asymmetric and Non‐Asymmetric) in Agrochemicals. ChemistrySelect 2023. [DOI: 10.1002/slct.202300204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Flow photochemistry — from microreactors to large-scale processing. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Jayaram A, Govindan K, Kannan VR, Thavasianandam Seenivasan V, Chen NQ, Lin WY. Iodine-Promoted Oxidative Cyclization of Acylated and Alkylated Derivatives from Epoxides toward the Synthesis of Aza Heterocycles. J Org Chem 2023; 88:1749-1761. [PMID: 36649653 DOI: 10.1021/acs.joc.2c02802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new method for directly synthesizing acylated and alkylated quinazoline derivatives by the epoxide ring-opening reaction in the presence of I2/DMSO with 2-aminobenzamide is described herein. The developed mild protocol is efficient and displays a wide variety of functional group tolerance and substrate-controlled high selectivity, and the application of a continuous flow technique allows for faster reaction time and higher yields. Moreover, the robustness of the method is applicable in gram-scale synthesis.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Vijaya Raghavan Kannan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | | | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
22
|
Nagy BS, Fu G, Hone CA, Kappe CO, Ötvös SB. Harnessing a Continuous-Flow Persulfuric Acid Generator for Direct Oxidative Aldehyde Esterifications. CHEMSUSCHEM 2023; 16:e202201868. [PMID: 36377674 PMCID: PMC10107610 DOI: 10.1002/cssc.202201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Persulfuric acid is a well-known oxidant in various industrial-scale purification procedures. However, due to its tendency toward explosive decomposition, its usefulness in organic synthesis remained largely underexplored. Herein, a continuous in situ persulfuric acid generator was developed and applied for oxidative esterification of aldehydes under flow conditions. Sulfuric acid served as a readily available and benign precursor to form persulfuric acid in situ. By taking advantage of the continuous-flow generator concept, safety hazards were significantly reduced, whilst a robust and effective approach was ensured for direct transformations of aldehydes to valuable esters. The process proved useful for the transformation of diverse aliphatic as well as aromatic aldehydes, while its preparative capability was verified by the multigram-scale synthesis of a pharmaceutically relevant key intermediate. The present flow protocol demonstrates the safe, sustainable, and scalable application of persulfuric acid in a manner that would not be amenable to conventional batch processing.
Collapse
Affiliation(s)
- Bence S. Nagy
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Gang Fu
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Christopher A. Hone
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - Sándor B. Ötvös
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| |
Collapse
|
23
|
Lee HL, Hung YL, Amin A, Pratama DE, Lee T. Green and Strategic Approach for Chiral Resolution by Diastereomeric Salt Formation: The Study of Racemic Ibuprofen. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Ying Lun Hung
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Ahmed Amin
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Dhanang Edy Pratama
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| |
Collapse
|
24
|
Dubois MAJ, Carreras V, Adams MR, Kairouz V, Vincent-Rocan JF, Riley JG, Charette AB. Process Intensification and Increased Safety for the On-Demand Continuous Flow Synthesis of Dithiothreitol, a Crucial Component in Polymerase Chain Reaction Testing Kits. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maryne A. J. Dubois
- Center for Continuous Flow Synthesis, FRQNT Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Virginie Carreras
- Center for Continuous Flow Synthesis, FRQNT Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Matt R. Adams
- Biovectra Inc., 11 Aviation Avenue, Charlottetown, Prince Edward Island C1E 0A1, Canada
| | - Vanessa Kairouz
- Center for Continuous Flow Synthesis, FRQNT Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | | | - John G. Riley
- Biovectra Inc., 11 Aviation Avenue, Charlottetown, Prince Edward Island C1E 0A1, Canada
| | - André B. Charette
- Center for Continuous Flow Synthesis, FRQNT Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
25
|
Liu J, Wang M, Liang C, Deng H, Yu X. Redox cascade reaction for kinetic resolution of racemic α-methylbenzylamine and biosynthesis of α-phenylethanol. Appl Microbiol Biotechnol 2022; 107:125-135. [DOI: 10.1007/s00253-022-12299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
|
26
|
Croci F, Vilím J, Adamopoulou T, Tseliou V, Schoenmakers PJ, Knaus T, Mutti FG. Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor. Chembiochem 2022; 23:e202200549. [PMID: 36173971 PMCID: PMC9828473 DOI: 10.1002/cbic.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Indexed: 02/03/2023]
Abstract
Herein, we show how the merge of biocatalysis with flow chemistry aided by 3D-printing technologies can facilitate organic synthesis. This concept was exemplified for the reductive amination of benzaldehyde catalysed by co-immobilised amine dehydrogenase and formate dehydrogenase in a continuous flow micro-reactor. For this purpose, we investigated enzyme co-immobilisation by covalent binding, or ion-affinity binding, or entrapment. Entrapment in an agarose hydrogel turned out to be the most promising solution for this biocatalytic reaction. Therefore, we developed a scalable and customisable approach whereby an agarose hydrogel containing the co-entrapped dehydrogenases was cast in a 3D-printed mould. The reactor was applied to the reductive amination of benzaldehyde in continuous flow over 120 h and afforded 47 % analytical yield and a space-time yield of 7.4 g L day-1 using 0.03 mol% biocatalysts loading. This work also exemplifies how rapid prototyping of enzymatic reactions in flow can be achieved through 3D-printing technology.
Collapse
Affiliation(s)
- Federico Croci
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Jan Vilím
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Theodora Adamopoulou
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Vasilis Tseliou
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Peter J. Schoenmakers
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
27
|
Beaver MG, Brown DB, Campbell K, Fang YQ, Ford DD, Mardirossian N, Nagy KD, Rötheli AR, Sheeran JW, Telmesani R, Parsons AT. Axial Chirality in the Sotorasib Drug Substance, Part 2: Leveraging a High-Temperature Thermal Racemization to Recycle the Classical Resolution Waste Stream. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Derek B. Brown
- Pivotal and Commercial Synthetics, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kiersten Campbell
- Snapdragon Chemistry, 300 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - Yuan-Qing Fang
- Snapdragon Chemistry, 300 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - David D. Ford
- Snapdragon Chemistry, 300 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - Narbe Mardirossian
- Molecular Engineering, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kevin D. Nagy
- Snapdragon Chemistry, 300 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - Andreas R. Rötheli
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jillian W. Sheeran
- Snapdragon Chemistry, 300 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - Reem Telmesani
- Snapdragon Chemistry, 300 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - Andrew T. Parsons
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
28
|
Kandasamy M, Ishitani H, Kobayashi S. Continuous‐Flow Synthesis of β‐Ketoesters and Successive Reactions in One‐Flow using Heterogeneous Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Patil DV, Lee Y, Kim HY, Oh K. Visible-Light-Promoted Photoaddition of N-Nitrosopiperidines to Alkynes: Continuous Flow Chemistry Approach to Tetrahydroimidazo[1,2- a]pyridine 1-Oxides. Org Lett 2022; 24:5840-5844. [PMID: 35921551 DOI: 10.1021/acs.orglett.2c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoaddition of N-nitrosopiperidines to terminal alkynes was effected under visible-light irradiation, in which a novel synthetic access to tetrahydroimidazo[1,2-a]pyridine 1-oxides was achieved via the dehydrogenative cycloisomerization of β-nitroso enamine intermediates. The decomposition pathways of N-nitrosamines, alkynes, and β-nitroso enamine intermediates were better handled in a continuous flow setting through the diffusion control of chemical species that negatively affected the formation of tetrahydroimidazo[1,2-a]pyridine 1-oxides under batch reaction conditions.
Collapse
Affiliation(s)
- Dilip V Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Yulim Lee
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
30
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
31
|
Borra S, Chae S, Kim HY, Oh K. Continuous Flow Synthesis of 1,4-Benzothiazines Using Ambivalent Reactivity of ( E)-β-Chlorovinyl Ketones: A Point of Reaction Control Enabled by Flow Chemistry. Org Lett 2022; 24:5287-5292. [PMID: 35848887 DOI: 10.1021/acs.orglett.2c01865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A continuous flow system to 1,4-benzothiazines was developed using the point of reaction control, where the ambivalent (E)-β-chlorovinyl ketones and 2,2'-dithiodianilines were confined in a diffusion controlled flow setting. The successful segregation of reactive chemical species in a flow setting allowed more defined reaction pathways that are not feasible in traditional batch reaction conditions. The point of reaction control in flow systems helps to execute the reactions often plagued with the concurrent generation of multiple chemical species.
Collapse
Affiliation(s)
- Satheesh Borra
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Soyeon Chae
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
32
|
Han J, Escorihuela J, Fustero S, Landa A, Soloshonok VA, Sorochinsky A. Asymmetric Michael Addition in Synthesis of β-Substituted GABA Derivatives. Molecules 2022; 27:3797. [PMID: 35744921 PMCID: PMC9231165 DOI: 10.3390/molecules27123797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
γ-Aminobutyric acid (GABA) represents one of the most prolific structural units widely used in the design of modern pharmaceuticals. For example, β-substituted GABA derivatives are found in numerous neurological drugs, such as baclofen, phenibut, tolibut, pregabalin, phenylpiracetam, brivaracetam, and rolipram, to mention just a few. In this review, we critically discuss the literature data reported on the preparation of substituted GABA derivatives using the Michael addition reaction as a key synthetic transformation. Special attention is paid to asymmetric methods featuring synthetically useful stereochemical outcomes and operational simplicity.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain;
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain;
| | - Aitor Landa
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain; (A.L.); (V.A.S.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain; (A.L.); (V.A.S.)
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Alexander Sorochinsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska Str., 02094 Kyiv, Ukraine
| |
Collapse
|
33
|
Li W, Jiang M, Liu M, Ling X, Xia Y, Wan L, Chen F. Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry 2022; 28:e202200700. [PMID: 35357730 DOI: 10.1002/chem.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Xu Ling
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| |
Collapse
|
34
|
Application of multi-wall carbon nanotubes supported L-proline in continuous flow catalysis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Hayashi Y, Hattori S, Koshino S. Asymmetric flow reactions catalyzed by immobilized diphenylprolinol alkyl ether: Michael reaction and domino reactions. Chem Asian J 2022; 17:e202200314. [DOI: 10.1002/asia.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yujiro Hayashi
- Tohoku University Department of Chemistry 6-3, Aramaki-AzaAobaAobaku 980-8578 Sendai JAPAN
| | - Shusuke Hattori
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| | - Seitaro Koshino
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| |
Collapse
|
36
|
Enzymatic kinetic resolution in flow for chiral mandelic acids. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Burange AS, Osman SM, Luque R. Understanding flow chemistry for the production of active pharmaceutical ingredients. iScience 2022; 25:103892. [PMID: 35243250 PMCID: PMC8867129 DOI: 10.1016/j.isci.2022.103892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-step organic syntheses of various drugs, active pharmaceutical ingredients, and other pharmaceutically and agriculturally important compounds have already been reported using flow synthesis. Compared to batch, hazardous and reactive reagents can be handled safely in flow. This review discusses the pros and cons of flow chemistry in today’s scenario and recent developments in flow devices. The review majorly emphasizes on the recent developments in the flow synthesis of pharmaceutically important products in last five years including flibanserin, imatinib, buclizine, cinnarizine, cyclizine, meclizine, ribociclib, celecoxib, SC-560 and mavacoxib, efavirenz, fluconazole, melitracen HCl, rasagiline, tamsulosin, valsartan, and hydroxychloroquine. Critical steps and new development in the flow synthesis of selected compounds are also discussed.
Collapse
Affiliation(s)
- Anand S. Burange
- Department of Chemistry, Wilson College, Chowpatty, Mumbai 400007, India
- Corresponding author
| | - Sameh M. Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 107198 Moscow, Russian Federation
- Corresponding author
| |
Collapse
|
38
|
Lemir ID, Oksdath-Mansilla G, Castro-Godoy WD, Schmidt LC, Argüello JE. Photochemical C sp2-H bond thiocyanation and selenocyanation of activated arenes, batch and continuous-flow approaches. Photochem Photobiol Sci 2022; 21:849-861. [PMID: 35113403 DOI: 10.1007/s43630-021-00167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
Herein, we report an eco-friendly photochemical oxidative Csp2-H thiocyanation and selenocyanation of activated arenes. The reaction proceeds under Violet LED irradiation in the presence of K2S2O8, which quickly oxidizes KSCN and KSeCN, finally producing arylthio/selenocyanates. Using this benign, atom-economic protocol, the desired chalcogenide products were obtained regioselectively, with isolated yields that range from very good to excellent. Although, mechanistic study indicates that it is difficult to distinguish between a radical to a SEAr reaction mechanism between the photo-induced formed •SCN, for the former, or NCSSCN, for the latter, to the aromatic heterocycles. The inhibition experiment together with the observed reactivity and regioselectivity, would be in agreement with the latter. The synthetic methodology designed could be successfully adapted to continuous-flow systems in a segmented-flow regime, employing the organic phase as the product reservoir. Using this setup, the advantage of the latter can be demonstrated by reducing the reaction time and improving the product yields. Similarly, the scaling up of the reaction to gram scale resulted in favorable outcomes by the flow setup, which installs the photo-flow chemistry as a powerful tool to be included into routine reaction procedures, which have great relevance for the pharmaceutical industry.
Collapse
Affiliation(s)
- Ignacio D Lemir
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Willber D Castro-Godoy
- CENSALUD-UES, Dpto. de Química, Física y Matemática, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador, 1101, El Salvador
| | - Luciana C Schmidt
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
39
|
Nagy BS, Llanes P, Pericas MA, Kappe CO, Ötvös SB. Enantioselective Flow Synthesis of Rolipram Enabled by a Telescoped Asymmetric Conjugate Addition-Oxidative Aldehyde Esterification Sequence Using in Situ-Generated Persulfuric Acid as Oxidant. Org Lett 2022; 24:1066-1071. [PMID: 35050638 PMCID: PMC8822492 DOI: 10.1021/acs.orglett.1c04300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel approach is reported for the enantioselective flow synthesis of rolipram comprising a telescoped asymmetric conjugate addition-oxidative aldehyde esterification sequence followed by trichlorosilane-mediated nitro group reduction and concomitant lactamization. The telescoped process takes advantage of a polystyrene-supported chiral organocatalyst along with in situ-generated persulfuric acid as a robust and scalable oxidant for direct aldehyde esterification. This approach demonstrates significantly improved productivity compared with earlier methodologies while ensuring environmentally benign metal-free conditions.
Collapse
Affiliation(s)
- Bence S Nagy
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
| | - Miquel A Pericas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain.,Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), E-08028 Barcelona, Spain
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| |
Collapse
|
40
|
Chaudhari MB, Gupta P, Llanes P, Zhou L, Zanda N, Pericàs MA. An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Org Biomol Chem 2022; 20:8273-8279. [DOI: 10.1039/d2ob01462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A solvent-free enantioselective Michael addition mediated by a polymer-supported Jørgensen–Hayashi catalyst and a domino Pictet–Spengler plus lactamisation sequence has been reported in continuous flow.
Collapse
Affiliation(s)
- Moreshwar B. Chaudhari
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Prachi Gupta
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Leijie Zhou
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Nicola Zanda
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
41
|
Westphal H, Warias R, Weise C, Ragno D, Becker H, Spanka M, Massi A, Gläser R, Schneider C, Belder D. An integrated resource-efficient microfluidic device for parallelised studies of immobilised chiral catalysts in continuous flow via miniaturized LC/MS-analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-μReactor catalysis screening: a novel method combining multiple miniaturized packed-bed reactors and on-line HPLC/MS-analysis on one single microfluidic device.
Collapse
Affiliation(s)
- Hannes Westphal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Chris Weise
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Luigi Borsari 46, 44121, Italy
| | - Holger Becker
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Matthias Spanka
- Institute of Organic Chemistry, Leipzig University, Johannisallee 28, 04103, Germany
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Luigi Borsari 46, 44121, Italy
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, Leipzig University, Johannisallee 28, 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| |
Collapse
|
42
|
Advances on Greener Asymmetric Synthesis of Antiviral Drugs via Organocatalysis. Pharmaceuticals (Basel) 2021; 14:ph14111125. [PMID: 34832907 PMCID: PMC8625736 DOI: 10.3390/ph14111125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause many severe human diseases, being responsible for remarkably high mortality rates. In this sense, both the academy and the pharmaceutical industry are continuously searching for new compounds with antiviral activity, and in addition, face the challenge of developing greener and more efficient methods to synthesize these compounds. This becomes even more important with drugs possessing stereogenic centers as highly enantioselective processes are required. In this minireview, the advances achieved to improve synthetic routes efficiency and sustainability of important commercially antiviral chiral drugs are discussed, highlighting the use of organocatalytic methods.
Collapse
|
43
|
Westphal H, Warias R, Becker H, Spanka M, Ragno D, Gläser R, Schneider C, Massi A, Belder D. Unveiling Organocatalysts Action – Investigating Immobilized Catalysts at Steady‐State Operation via Lab‐on‐a‐Chip Technology. ChemCatChem 2021. [DOI: 10.1002/cctc.202101148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hannes Westphal
- Institute of Analytical Chemistry Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Rico Warias
- Institute of Analytical Chemistry Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Holger Becker
- Institute of Chemical Technology Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Matthias Spanka
- Institute of Organic Chemistry Leipzig University Johannisallee 28 04103 Leipzig Germany
| | - Daniele Ragno
- Department of Chemical Pharmaceutical and Agricultural Sciences University of Ferrara Luigi Borsari 46 44121 Ferrara Italy
| | - Roger Gläser
- Institute of Chemical Technology Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Christoph Schneider
- Institute of Organic Chemistry Leipzig University Johannisallee 28 04103 Leipzig Germany
| | - Alessandro Massi
- Department of Chemical Pharmaceutical and Agricultural Sciences University of Ferrara Luigi Borsari 46 44121 Ferrara Italy
| | - Detlev Belder
- Institute of Analytical Chemistry Leipzig University Linnéstraße 3 04103 Leipzig Germany
| |
Collapse
|
44
|
Continuous-Flow Catalysis. Catalysts 2021. [DOI: 10.3390/catal11091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the past twenty years, flow chemistry has emerged as an enabling tool to simplify, accelerate, integrate, scale-up and automatize chemical reactions [...]
Collapse
|