1
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
2
|
Kizer ME, R. Dwyer J. Editors' Choice-Perspective-Deciphering the Glycan Kryptos by Solid-State Nanopore Single-Molecule Sensing: A Call for Integrated Advancements Across Glyco- and Nanopore Science. ECS SENSORS PLUS 2024; 3:020604. [PMID: 38799647 PMCID: PMC11125560 DOI: 10.1149/2754-2726/ad49b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Glycans, or complex carbohydrates, are information-rich biopolymers critical to many biological processes and with considerable importance in pharmaceutical therapeutics. Our understanding, though, is limited compared to other biomolecules such as DNA and proteins. The greater complexity of glycan structure and the limitations of conventional chemical analysis methods hinder glycan studies. Auspiciously, nanopore single-molecule sensors-commercially available for DNA sequencing-hold great promise as a tool for enabling and advancing glycan analysis. We focus on two key areas to advance nanopore glycan characterization: molecular surface coatings to enhance nanopore performance including by molecular recognition, and high-quality glycan chemical standards for training.
Collapse
Affiliation(s)
- Megan E. Kizer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States of America
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island, 02881, United States of America
| |
Collapse
|
3
|
Ayyanar C, Rakshit S, Sarkar K, Pramanik S. Unprecedented Approach of Fabrication and Analysis of a Bioactive PDMS/Hydroxyapatite/Graphene Nanocomposite Scaffold with a Vascular Channel to Combat Carcinogenesis. ACS APPLIED BIO MATERIALS 2024; 7:3388-3402. [PMID: 38660938 DOI: 10.1021/acsabm.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the present investigation, natural bone-derived hydroxyapatite (HA, 2 wt %) and/or exfoliated graphene (Gr, 0.1 wt %)-embedded polydimethylsiloxane (PDMS) elastomeric films were prepared using a vascular method. The morphology, mechanical properties, crystallinity, and chemical structure of the composite films were evaluated. The in vitro biodegradation kinetics of the films indicates their adequate physiological stability. Most of the results favored PDMS/HA/Gr as a best composite scaffold having more than 703% elongation. A simulation study of the microfluidic vascular channel of the PDMS/HA/Gr scaffold suggests that the pressure drop at the outlet became greater (from 1.19 to 0.067 Pa) unlike velocity output (from 0.071 to 0.089 m/s), suggesting a turbulence-free laminar flow. Our bioactive scaffold material, PDMS/HA/Gr, showed highest cytotoxicity toward the lung cancer and breast cancer cells through Runx3 protein-mediated cytotoxic T lymphocyte (CTL) generation. Our data and predicted mechanism also suggested that the PDMS/HA/Gr-supported peripheral blood mononuclear cells (PBMCs) not only increased the generation of CTL but also upregulated the expression of RUNX3. Since the PDMS/HA/Gr scaffold-supported Runx3 induced CTL generation caused maximum cell cytotoxicity of breast cancer (MCF-7) and lung cancer (A549) cells, PDMS/HA/Gr can be treated as an excellent potential candidate for CTL-mediated cancer therapy.
Collapse
Affiliation(s)
- Chellaiah Ayyanar
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Sudeshna Rakshit
- Cancer Immunology and Gene Editing Technology Lab, Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Koustav Sarkar
- Cancer Immunology and Gene Editing Technology Lab, Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024:e2400058. [PMID: 38644684 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
| |
Collapse
|
5
|
Mousazadeh M, Daneshpour M, Rafizadeh Tafti S, Shoaie N, Jahanpeyma F, Mousazadeh F, Khosravi F, Khashayar P, Azimzadeh M, Mostafavi E. Nanomaterials in electrochemical nanobiosensors of miRNAs. NANOSCALE 2024; 16:4974-5013. [PMID: 38357721 DOI: 10.1039/d3nr03940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nanomaterial-based biosensors have received significant attention owing to their unique properties, especially enhanced sensitivity. Recent advancements in biomedical diagnosis have highlighted the role of microRNAs (miRNAs) as sensitive prognostic and diagnostic biomarkers for various diseases. Current diagnostics methods, however, need further improvements with regards to their sensitivity, mainly due to the low concentration levels of miRNAs in the body. The low limit of detection of nanomaterial-based biosensors has turned them into powerful tools for detecting and quantifying these biomarkers. Herein, we assemble an overview of recent developments in the application of different nanomaterials and nanostructures as miRNA electrochemical biosensing platforms, along with their pros and cons. The techniques are categorized based on the nanomaterial used.
Collapse
Affiliation(s)
- Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Livogen Pharmed, Research and Innovation Center, Tehran, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Faezeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Khosravi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, 9050, Ghent, Belgium.
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 89165-887, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Stuber A, Schlotter T, Hengsteler J, Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:283-316. [PMID: 38273209 DOI: 10.1007/10_2023_240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Zhang X, Dou H, Chen X, Lin M, Dai Y, Xia F. Solid-State Nanopore Sensors with Enhanced Sensitivity through Nucleic Acid Amplification. Anal Chem 2023; 95:17153-17161. [PMID: 37966312 DOI: 10.1021/acs.analchem.3c03806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Solid-state nanopores have wide applications in DNA sequencing, energy conversion and storage, seawater desalination, sensors, and reactors due to their high stability, controllable geometry, and a variety of pore-forming materials. Solid-state nanopore sensors can be used for qualitative and quantitative analyses of ions, small molecules, proteins, and nucleic acids. The combination of nucleic acid amplification and solid-state nanopores to achieve trace detection of analytes is gradually attracting attention. This review outlines nucleic acid amplification strategies for enhancing the sensitivity of solid-state nanopore sensors by summarizing the articles published in the past 10 years. The future development prospects and challenges of nucleic acid amplification in solid-state nanopore sensors are discussed. This review helps readers better understand the field of solid-state nanopore sensors. We believe that solid-state nanopore sensors will break through the bottleneck of traditional detection and become a powerful single-molecule detection platform.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huimin Dou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaorui Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Zeid AM, Mostafa IM, Lou B, Xu G. Advances in miniaturized nanosensing platforms for analysis of pathogenic bacteria and viruses. LAB ON A CHIP 2023; 23:4160-4172. [PMID: 37668185 DOI: 10.1039/d3lc00674c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Pathogenic bacteria and viruses are the main causes of infectious diseases all over the world. Early diagnosis of such infectious diseases is a critical step in management of their spread and treatment of the infection in its early stages. Therefore, the innovation of smart sensing platforms for point-of-care diagnosis of life-threatening infectious diseases such as COVID-19 is a prerequisite to isolate the patients and provide them with suitable treatment strategies. The developed diagnostic sensors should be highly sensitive, specific, ultrafast, portable, cheap, label-free, and selective. In recent years, different nanosensors have been developed for the detection of bacterial and viral pathogens. We focus here on label-free miniaturized nanosensing platforms that were efficiently applied for pathogenic detection in biological matrices. Such devices include nanopore sensors and nanostructure-integrated lab-on-a-chip sensors that are characterized by portability, simplicity, cost-effectiveness, and ultrafast analysis because they avoid the time-consuming sample preparation steps. Furthermore, nanopore-based sensors could afford single-molecule counting of viruses in biological specimens, yielding high-sensitivity and high-accuracy detection. Moreover, non-invasive nanosensors that are capable of detecting volatile organic compounds emitted from the diseased organ to the skin, urine, or exhaled breath were also reviewed. The merits and applications of all these nanosensors for analysis of pathogenic bacteria and viruses in biological matrices will be discussed in detail, emphasizing the importance of artificial intelligence in advancing specific nanosensors.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Leitao SM, Navikas V, Miljkovic H, Drake B, Marion S, Pistoletti Blanchet G, Chen K, Mayer SF, Keyser UF, Kuhn A, Fantner GE, Radenovic A. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. NATURE NANOTECHNOLOGY 2023; 18:1078-1084. [PMID: 37337057 DOI: 10.1038/s41565-023-01412-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/02/2023] [Indexed: 06/21/2023]
Abstract
In current nanopore-based label-free single-molecule sensing technologies, stochastic processes influence the selection of translocating molecule, translocation rate and translocation velocity. As a result, single-molecule translocations are challenging to control both spatially and temporally. Here we present a method using a glass nanopore mounted on a three-dimensional nanopositioner to spatially select molecules, deterministically tethered on a glass surface, for controlled translocations. By controlling the distance between the nanopore and glass surface, we can actively select the region of interest on the molecule and scan it a controlled number of times and at a controlled velocity. Decreasing the velocity and averaging thousands of consecutive readings of the same molecule increases the signal-to-noise ratio by two orders of magnitude compared with free translocations. We demonstrate the method's versatility by assessing DNA-protein complexes, DNA rulers and DNA gaps, achieving down to single-nucleotide gap detection.
Collapse
Affiliation(s)
- S M Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - V Navikas
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - H Miljkovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - B Drake
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - S Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - G Pistoletti Blanchet
- Laboratory of Molecular Biology, Institute of Life Technologies, School of Engineering, HES-SO Valais-Wallis, Sion, Switzerland
- Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, EPFL, Sion, Switzerland
| | - K Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - S F Mayer
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - U F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - A Kuhn
- Laboratory of Molecular Biology, Institute of Life Technologies, School of Engineering, HES-SO Valais-Wallis, Sion, Switzerland
| | - G E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| | - A Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
10
|
Fang S, Yin B, Xie W, He S, Liang L, Tang P, Tian R, Weng T, Yuan J, Wang D. Low-noise and high-speed trans-impedance amplifier for nanopore sensor. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:074704. [PMID: 37439626 DOI: 10.1063/5.0155192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
The small current detection circuit is the core component of the accurate detection of the nanopore sensor. In this paper, a compact, low-noise, and high-speed trans-impedance amplifier is built for the nanopore detection system. The amplifier consists of two amplification stages. The first stage performs low-noise trans-impedance amplification by using ADA4530-1, which is a high-performance FET operational amplifier, and a high-ohm feedback resistor of 1 GΩ. The high pass shelf filter in the second stage recovers the higher frequency above the 3 dB cutoff in the first stage to extend the maximum bandwidth up to 50 kHz. The amplifier shows a low noise below sub-2 pA rms when tuned to have a bandwidth of around 5 kHz. It also guarantees a stable frequency response in the nanopore sensor.
Collapse
Affiliation(s)
- Shaoxi Fang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Bohua Yin
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Changchun University of Science and Technology, Jilin Province, Changchun 130022, People's Republic of China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Peng Tang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Rong Tian
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Ting Weng
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Jiahu Yuan
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Changchun University of Science and Technology, Jilin Province, Changchun 130022, People's Republic of China
| |
Collapse
|
11
|
Kitta K, Sakamoto M, Hayakawa K, Nukazuka A, Kano K, Yamamoto T. Nanopore Impedance Spectroscopy Reveals Electrical Properties of Single Nanoparticles for Detecting and Identifying Pathogenic Viruses. ACS OMEGA 2023; 8:14684-14693. [PMID: 37125101 PMCID: PMC10134219 DOI: 10.1021/acsomega.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
In the conventional nanopore method, direct current (DC) is used to study molecules and nanoparticles; however, it cannot easily discriminate between materials with similarly sized particles. Herein, we developed an alternating current (AC)-based nanopore method to measure the impedance of a single nanoparticle and distinguish between particles of the same size based on their material characteristics. We demonstrated the performance of this method using impedance measurements to determine the size and frequency characteristics of various particles, ranging in diameter from 200 nm to 1 μm. Furthermore, the alternating current method exhibited high accuracy for biosensing applications, identifying viruses with over 85% accuracy using single-particle measurement and machine learning. Therefore, this novel nanopore method is useful for applications in materials science, biology, and medicine.
Collapse
Affiliation(s)
- Kazuki Kitta
- Mechanical
Engineering, Tokyo Institute of Technology, Ishikawadai 1-314, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Maami Sakamoto
- Mechanical
Engineering, Tokyo Institute of Technology, Ishikawadai 1-314, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kei Hayakawa
- Material
Research and Innovation Division, DENSO
CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Akira Nukazuka
- Material
Research and Innovation Division, DENSO
CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kazuhiko Kano
- Material
Research and Innovation Division, DENSO
CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Takatoki Yamamoto
- Mechanical
Engineering, Tokyo Institute of Technology, Ishikawadai 1-314, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Huang C, Li Z, Zhu X, Ma X, Li N, Fan J. Two Detection Modes of Nanoslit Sensing Based on Planar Heterostructure of Graphene/Hexagonal Boron Nitride. ACS NANO 2023; 17:3301-3312. [PMID: 36638059 DOI: 10.1021/acsnano.2c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-state nanopore sequencing is now confronted with problems of stochastic pore clogging and too fast speed during the DNA permeation through a nanopore, although this technique is revolutionary with long readability and high efficiency. These two problems are related to controlling molecular transportation during sequencing. To control the DNA motion and identify the four bases, we propose nanoslit sensing based on the planar heterostructure of two-dimensional graphene and hexagonal boron nitride. Molecular dynamics simulations are performed on investigating the motion of DNA molecules on the heterostructure with a nanoslit sensor. Results show that the DNA molecules are confined within the hexagonal boron nitride (HBN) domain of the heterostructure. And the confinement effects of the heterostructure can be optimized by tailoring the stripe length. Besides, there are two ways of DNA permeation through nanoslits: the DNA can cross or translocate the nanoslit under applied voltages along the y and z directions. The two detection modes are named cross-slit and trans-slit, respectively. In both modes, the ionic current drops can be observed when the nanoslit is occupied by the DNA. And the ionic currents and dwell times can be simultaneously detected to identify the four different DNA bases. This study can shed light on the sensing mechanism based on the nanoslit sensor of a planar heterostructure and provide theoretical guidance on designing devices controlling molecular transportation during nanopore sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Na Li
- School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan030000, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
14
|
Ratschow AD, Pandey D, Liebchen B, Bhattacharyya S, Hardt S. Resonant Nanopumps: ac Gate Voltages in Conical Nanopores Induce Directed Electrolyte Flow. PHYSICAL REVIEW LETTERS 2022; 129:264501. [PMID: 36608199 DOI: 10.1103/physrevlett.129.264501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Inducing transport in electrolyte-filled nanopores with dc fields has led to influential applications ranging from nanosensors to DNA sequencing. Here we use the Poisson-Nernst-Planck and Navier-Stokes equations to show that unbiased ac fields can induce comparable directional flows in gated conical nanopores. This flow exclusively occurs at intermediate driving frequencies and hinges on the resonance of two competing timescales, representing space charge development at the ends and in the interior of the pore. We summarize the physics of resonant nanopumping in an analytical model that reproduces the results of numerical simulations. Our findings provide a generic route toward real-time controllable flow patterns, which might find applications in controlling the translocation of small molecules or nanocolloids.
Collapse
Affiliation(s)
- Aaron D Ratschow
- Institute for Nano- and Microfluidics, TU Darmstadt, Alarich-Weiss-Straße 10, D-64237 Darmstadt, Germany
| | - Doyel Pandey
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India-721302
| | - Benno Liebchen
- Theory of Soft Matter, Department of Physics, TU Darmstadt, Hochschulstraße 12, D-64289 Darmstadt, Germany
| | - Somnath Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India-721302
| | - Steffen Hardt
- Institute for Nano- and Microfluidics, TU Darmstadt, Alarich-Weiss-Straße 10, D-64237 Darmstadt, Germany
| |
Collapse
|
15
|
Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel. BIOSENSORS 2022; 12:bios12090690. [PMID: 36140075 PMCID: PMC9496393 DOI: 10.3390/bios12090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
We demonstrate an optofluidic device which utilizes the optical scattering and gradient forces for particle trapping in microchannels featuring 300 nm thick membranes. On-chip waveguides are used to direct light into microfluidic trapping channels. Radiation pressure is used to push particles into a protrusion cavity, isolating the particles from liquid flow. Two different designs are presented: the first exclusively uses the optical scattering force for particle manipulation, and the second uses both scattering and gradient forces. Trapping performance is modeled for both cases. The first design, referred to as the orthogonal force design, is shown to have a 80% capture efficiency under typical operating conditions. The second design, referred to as the gradient force design, is shown to have 98% efficiency under the same conditions.
Collapse
|
16
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
17
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
18
|
Lin K, Chen C, Wang C, Lian P, Wang Y, Xue S, Sha J, Chen Y. Fabrication of solid-state nanopores. NANOTECHNOLOGY 2022; 33:272003. [PMID: 35349996 DOI: 10.1088/1361-6528/ac622b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are valuable single-molecule sensing tools that have been widely applied to the detection of DNA, RNA, proteins, viruses, glycans, etc. The prominent sensing platform is helping to improve our health-related quality of life and accelerate the rapid realization of precision medicine. Solid-state nanopores have made rapid progress in the past decades due to their flexible size, structure and compatibility with semiconductor fabrication processes. With the development of semiconductor fabrication techniques, materials science and surface chemistry, nanopore preparation and modification technologies have made great breakthroughs. To date, various solid-state nanopore materials, processing technologies, and modification methods are available to us. In the review, we outline the recent advances in nanopores fabrication and analyze the virtues and limitations of various membrane materials and nanopores drilling techniques.
Collapse
Affiliation(s)
- Kabin Lin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Congsi Wang
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Peiyuan Lian
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Song Xue
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
19
|
Abstract
Single-molecule detection and characterization with nanopores is a powerful technique that does not require labeling. Multinanopore systems, especially double nanopores, have attracted wide attention and have been applied in many fields. However, theoretical studies of electrokinetic ion transport in nanopores mainly focus on single nanopores. In this paper, for the first time, a theoretical study of pH-regulated double-barreled nanopores is conducted using three-dimensional Poisson-Nernst-Planck equations and Navier-Stokes equations. Four ionic species and the surface chemistry on the walls of the nanopores are included. The results demonstrate that the properties of the bulk salt solution significantly affect nanopore conductivity and ion transport phenomena in nanopores. There are two ion-enriched zones and two ion-depleted zones in double-barreled nanopores. Due to the symmetry of the double-barreled nanopore structure and surface charge density, there is no ionic rectification effect in double-barreled nanopores. The ion selectivity is similar to that of conventional single pH-regulated nanopores.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
20
|
|
21
|
Zhang Y, Ma D, Gu Z, Zhan L, Sha J. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis. NANOMATERIALS 2021; 11:nano11092450. [PMID: 34578767 PMCID: PMC8468320 DOI: 10.3390/nano11092450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023]
Abstract
Solid-state nanopores have been developed as a prominent tool for single molecule analysis in versatile applications. Although controlled dielectric breakdown (CDB) is the most accessible method for a single nanopore fabrication, it is still necessary to improve the fabrication efficiency and avoid the generation of multiple nanopores. In this work, we treated the SiNx membranes in the air–plasma before the CDB process, which shortened the time-to-pore-formation by orders of magnitude. λ-DNA translocation experiments validated the functionality of the pore and substantiated the presence of only a single pore on the membrane. Our fabricated pore could also be successfully used to detect short single-stranded DNA (ssDNA) fragments. Using to ionic current signals, ssDNA fragments with different lengths could be clearly distinguished. These results will provide a valuable reference for the nanopore fabrication and DNA analysis.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
- Correspondence: (Y.Z.); (J.S.)
| | - Dexian Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
- China Aerospace Science & Industry Nanjing Chenguang Group, Nanjing 210006, China
| | - Zengdao Gu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
| | - Lijian Zhan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
- Correspondence: (Y.Z.); (J.S.)
| |
Collapse
|