1
|
Shi B, Du M, Chen Z. Advances in tumor immunotherapy targeting macrophages. Expert Rev Clin Immunol 2024:1-18. [PMID: 39636579 DOI: 10.1080/1744666x.2024.2438721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/03/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION In recent years, immunotherapy has shown significant therapeutic potential in patients with advanced tumors. However, only a small number of individuals benefit, mainly due to the tumor microenvironment (TME), which provides conditions for the development of tumors. Macrophages in TME, known as tumor-associated macrophages (TAM), are mainly divided into M1 anti-tumor and M2 pro-tumor phenotypes, which play a regulatory role in various stages of tumorigenesis, promote tumorigenesis and metastasis, and cause immunotherapy resistance. AREAS COVERED This review focuses on research strategies and preclinical/clinical research progress in translating TAM into antitumor phenotype by referring to the PubMed database for five years. These include small molecule chemotherapy drug development, metabolic regulation, gene editing, physical stimulation, nanotechnology-mediated combination therapy strategies, and chimeric antigen receptor-based immunotherapy. EXPERT OPINION It is necessary to explore the surface-specific receptors and cell signaling pathways of TAM further to improve the specificity and targeting of drugs and to strengthen research in the field of probes that can monitor changes in TAM in real time. In addition, the physical stimulation polarization strategy has the advantages of being noninvasive, economical, and stable and will have excellent clinical transformation value in the future.
Collapse
Affiliation(s)
- Binrui Shi
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Qiu C, Zhang Z, Xu Z, Qiao L, Ning L, Zhang S, Su M, Wu W, Song K, Xu Z, Chen LQ, Zheng H, Liu C, Qiu W, Li F. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging. Nat Commun 2024; 15:10580. [PMID: 39632872 PMCID: PMC11618688 DOI: 10.1038/s41467-024-55032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Photoacoustic imaging is a promising non-invasive functional imaging modality for fundamental research and clinical diagnosis. However, achieving capillary-level resolution, wide field-of-view, and high frame rates remains challenging. To address this, we propose a transparent ultrasonic transducer design using our developed transparent Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Our fabrication technique incorporates quartz-glass-and-epoxy matching layers with low-resistance indium-tin-oxide electrodes through a brass-ring based structure, enabling a high frequency (28.5 MHz), wide bandwidth (78%), and enhanced pulse-echo sensitivity (2.5 V under 2-μJ pulse excitation). Our Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3-based transparent ultrasonic transducer demonstrates a four-fold enhancement in photoacoustic detection sensitivity when compared to the LiNbO3-based counterpart, leading to a 13 dB improvement of signal-to-noise ratio in microvascular photoacoustic imaging. This enables dynamic monitoring of mouse cerebral cortex microvasculature during seizures at 0.8 Hz frame rates over a 1.5 × 1.5 mm2 field-of-view. Our work paves the way for high-performance and compact photoacoustic imaging systems using advanced piezoelectric materials.
Collapse
Affiliation(s)
- Chaorui Qiu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liao Qiao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li Ning
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shujun Zhang
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Min Su
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weichang Wu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kexin Song
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Xu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long-Qing Chen
- Materials Research Institute, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Hairong Zheng
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Weibao Qiu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fei Li
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 PMCID: PMC11638729 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Ciocca M, Marcozzi S, Mariani P, Lacconi V, Di Carlo A, Cinà L, Rosato-Siri MD, Zanon A, Cattelan G, Avancini E, Lugli P, Priya S, Camaioni A, Brown TM. A Polymer Bio–Photoelectrolytic Platform for Electrical Signal Measurement and for Light Modulation of Ion Fluxes and Proliferation in a Neuroblastoma Cell Line. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Manuela Ciocca
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Serena Marcozzi
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Paolo Mariani
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Aldo Di Carlo
- Istituto di Struttura della Materia CNR-ISM via Fosso del Cavaliere 100 00133 Rome Italy
| | - Lucio Cinà
- Cicci Research srl., Via Giordania 227 58100 Grosseto Italy
| | - Marcelo D. Rosato-Siri
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Giada Cattelan
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Enrico Avancini
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Paolo Lugli
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Shashank Priya
- Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA
| | - Antonella Camaioni
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Thomas M. Brown
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
5
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Chen H, Agrawal S, Osman M, Minotto J, Mirg S, Liu J, Dangi A, Tran Q, Jackson T, Kothapalli SR. A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging. BME FRONTIERS 2022; 2022:9871098. [PMID: 37850172 PMCID: PMC10521654 DOI: 10.34133/2022/9871098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction. Currently, combining ultrasound, photoacoustic, and optical imaging modalities is challenging because conventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to coalign both optical and ultrasound waves in the same field of view. Methods. One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) linear array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results. The TUT-array consists of 64 elements and centered at ~6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic, and fluorescence imaging in real-time using the TUT-array directly coupled to the tissue mimicking phantoms. Conclusion. The TUT-array successfully showed a multimodal imaging capability and has potential applications in diagnosing cancer, neurological, and vascular diseases, including image-guided endoscopy and wearable imaging.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sumit Agrawal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mohamed Osman
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Josiah Minotto
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jinyun Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ajay Dangi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quyen Tran
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas Jackson
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Mirg S, Chen H, Turner KL, Gheres KW, Liu J, Gluckman BJ, Drew PJ, Kothapalli SR. Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window. OPTICS LETTERS 2022; 47:1121-1124. [PMID: 35230306 DOI: 10.1364/ol.450648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) can map the cerebral vasculature at capillary-level resolution. However, the OR-PAM setup's bulky imaging head makes awake mouse brain imaging challenging and inhibits its integration with other optical neuroimaging modalities. Moreover, the glass cranial windows used for optical microscopy are unsuitable for OR-PAM due to the acoustic impedance mismatch between the glass plate and the tissue. To overcome these challenges, we propose a lithium niobate based transparent ultrasound transducer (TUT) as a cranial window on a thinned mouse skull. The TUT cranial window simplifies the imaging head considerably due to its dual functionality as an optical window and ultrasound transducer. The window remains stable for six weeks, with no noticeable inflammation and minimal bone regrowth. The TUT window's potential is demonstrated by imaging the awake mouse cerebral vasculature using OR-PAM, intrinsic optical signal imaging, and two-photon microscopy. The TUT cranial window can potentially also be used for ultrasound stimulation and simultaneous multimodal imaging of the awake mouse brain.
Collapse
|