1
|
Fanous MJ, Casteleiro Costa P, Işıl Ç, Huang L, Ozcan A. Neural network-based processing and reconstruction of compromised biophotonic image data. LIGHT, SCIENCE & APPLICATIONS 2024; 13:231. [PMID: 39237561 PMCID: PMC11377739 DOI: 10.1038/s41377-024-01544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/07/2024]
Abstract
In recent years, the integration of deep learning techniques with biophotonic setups has opened new horizons in bioimaging. A compelling trend in this field involves deliberately compromising certain measurement metrics to engineer better bioimaging tools in terms of e.g., cost, speed, and form-factor, followed by compensating for the resulting defects through the utilization of deep learning models trained on a large amount of ideal, superior or alternative data. This strategic approach has found increasing popularity due to its potential to enhance various aspects of biophotonic imaging. One of the primary motivations for employing this strategy is the pursuit of higher temporal resolution or increased imaging speed, critical for capturing fine dynamic biological processes. Additionally, this approach offers the prospect of simplifying hardware requirements and complexities, thereby making advanced imaging standards more accessible in terms of cost and/or size. This article provides an in-depth review of the diverse measurement aspects that researchers intentionally impair in their biophotonic setups, including the point spread function (PSF), signal-to-noise ratio (SNR), sampling density, and pixel resolution. By deliberately compromising these metrics, researchers aim to not only recuperate them through the application of deep learning networks, but also bolster in return other crucial parameters, such as the field of view (FOV), depth of field (DOF), and space-bandwidth product (SBP). Throughout this article, we discuss various biophotonic methods that have successfully employed this strategic approach. These techniques span a wide range of applications and showcase the versatility and effectiveness of deep learning in the context of compromised biophotonic data. Finally, by offering our perspectives on the exciting future possibilities of this rapidly evolving concept, we hope to motivate our readers from various disciplines to explore novel ways of balancing hardware compromises with compensation via artificial intelligence (AI).
Collapse
Affiliation(s)
- Michael John Fanous
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
| | - Paloma Casteleiro Costa
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
| | - Çağatay Işıl
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.
- Bioengineering Department, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA.
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Huang Z, Wang Z, Pirone D, Bianco V, Miccio L, Memmolo P, Cao L, Ferraro P. Rapid flowing cells localization enabled by spatiotemporal manipulation of their holographic patterns. APL Bioeng 2024; 8:036114. [PMID: 39263370 PMCID: PMC11390135 DOI: 10.1063/5.0222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Lab-on-a-Chip microfluidic devices present an innovative and cost-effective platform in the current trend of miniaturization and simplification of imaging flow cytometry; they are excellent candidates for high-throughput single-cell analysis. In such microfluidic platforms, cell tracking becomes a fundamental tool for investigating biophysical processes, from intracellular dynamics to the characterization of cell motility and migration. However, high-throughput and long-term cell tracking puts a high demand on the consumption of computing resources. Here, we propose a novel strategy to achieve rapid 3D cell localizations along the microfluidic channel. This method is based on the spatiotemporal manipulation of recorded holographic interference fringes, and it allows fast and precise localization of cells without performing complete holographic reconstruction. Conventional holographic tracking is typically based on the phase contrast obtained by decoupling the calculation of optical axial and transverse coordinates. Computing time and resource consumption may increase because all the frames need to be calculated in the Fourier domain. In our proposed method, the 2D transverse positions are directly located by morphological calculation based on the hologram. The complex-amplitude wavefronts are directly reconstructed by spatiotemporal phase shifting to calculate the axial position by the refocusing criterion. Only spatial calculation is considered in the proposed method. We demonstrate that the computational time of transverse tracking is only one-tenth of the conventional method, while the total computational time of the proposed method decreases up to 54% with respect to the conventional approach. The proposed approach can open the route for analyzing flow cytometry in quantitative phase microscopy assays.
Collapse
Affiliation(s)
| | | | - Daniele Pirone
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Italy
| | - Pasquale Memmolo
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Italy
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Italy
| |
Collapse
|
3
|
Giugliano G, Schiavo M, Pirone D, Běhal J, Bianco V, Montefusco S, Memmolo P, Miccio L, Ferraro P, Medina DL. Investigation on lysosomal accumulation by a quantitative analysis of 2D phase-maps in digital holography microscopy. Cytometry A 2024; 105:323-331. [PMID: 38420869 DOI: 10.1002/cyto.a.24833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.
Collapse
Affiliation(s)
- Giusy Giugliano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Michela Schiavo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Jaromír Běhal
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
- Department of Optics, Palacký University, Olomouc, Czech Republic
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|
4
|
Ciaparrone G, Pirone D, Fiore P, Xin L, Xiao W, Li X, Bardozzo F, Bianco V, Miccio L, Pan F, Memmolo P, Tagliaferri R, Ferraro P. Label-free cell classification in holographic flow cytometry through an unbiased learning strategy. LAB ON A CHIP 2024; 24:924-932. [PMID: 38264771 DOI: 10.1039/d3lc00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nowadays, label-free imaging flow cytometry at the single-cell level is considered the stepforward lab-on-a-chip technology to address challenges in clinical diagnostics, biology, life sciences and healthcare. In this framework, digital holography in microscopy promises to be a powerful imaging modality thanks to its multi-refocusing and label-free quantitative phase imaging capabilities, along with the encoding of the highest information content within the imaged samples. Moreover, the recent achievements of new data analysis tools for cell classification based on deep/machine learning, combined with holographic imaging, are urging these systems toward the effective implementation of point of care devices. However, the generalization capabilities of learning-based models may be limited from biases caused by data obtained from other holographic imaging settings and/or different processing approaches. In this paper, we propose a combination of a Mask R-CNN to detect the cells, a convolutional auto-encoder, used to the image feature extraction and operating on unlabelled data, thus overcoming the bias due to data coming from different experimental settings, and a feedforward neural network for single cell classification, that operates on the above extracted features. We demonstrate the proposed approach in the challenging classification task related to the identification of drug-resistant endometrial cancer cells.
Collapse
Affiliation(s)
- Gioele Ciaparrone
- Neurone Lab, Department of Management and Innovation Systems (DISA-MIS), University of Salerno, Fisciano, Italy.
| | - Daniele Pirone
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| | - Pierpaolo Fiore
- Neurone Lab, Department of Management and Innovation Systems (DISA-MIS), University of Salerno, Fisciano, Italy.
| | - Lu Xin
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, 100191 Beijing, China.
| | - Wen Xiao
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, 100191 Beijing, China.
| | - Xiaoping Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Francesco Bardozzo
- Neurone Lab, Department of Management and Innovation Systems (DISA-MIS), University of Salerno, Fisciano, Italy.
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| | - Vittorio Bianco
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| | - Lisa Miccio
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| | - Feng Pan
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, 100191 Beijing, China.
| | - Pasquale Memmolo
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| | - Roberto Tagliaferri
- Neurone Lab, Department of Management and Innovation Systems (DISA-MIS), University of Salerno, Fisciano, Italy.
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| | - Pietro Ferraro
- CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
| |
Collapse
|
5
|
Pirone D, Bianco V, Miccio L, Memmolo P, Psaltis D, Ferraro P. Beyond fluorescence: advances in computational label-free full specificity in 3D quantitative phase microscopy. Curr Opin Biotechnol 2024; 85:103054. [PMID: 38142647 DOI: 10.1016/j.copbio.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Despite remarkable progresses in quantitative phase imaging (QPI) microscopes, their wide acceptance is limited due to the lack of specificity compared with the well-established fluorescence microscopy. In fact, the absence of fluorescent tag prevents to identify subcellular structures in single cells, making challenging the interpretation of label-free 2D and 3D phase-contrast data. Great effort has been made by many groups worldwide to address and overcome such limitation. Different computational methods have been proposed and many more are currently under investigation to achieve label-free microscopic imaging at single-cell level to recognize and quantify different subcellular compartments. This route promises to bridge the gap between QPI and FM for real-world applications.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Demetri Psaltis
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
6
|
Sun J, Yang B, Koukourakis N, Guck J, Czarske JW. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat Commun 2024; 15:147. [PMID: 38167247 PMCID: PMC10762230 DOI: 10.1038/s41467-023-44280-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.
Collapse
Affiliation(s)
- Jiawei Sun
- Shanghai Artificial Intelligence Laboratory, Longwen Road 129, Xuhui District, 200232, Shanghai, China.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
| | - Bin Yang
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Wang K, Song L, Wang C, Ren Z, Zhao G, Dou J, Di J, Barbastathis G, Zhou R, Zhao J, Lam EY. On the use of deep learning for phase recovery. LIGHT, SCIENCE & APPLICATIONS 2024; 13:4. [PMID: 38161203 PMCID: PMC10758000 DOI: 10.1038/s41377-023-01340-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase image processing. Finally, we summarize the work in DL for PR and provide an outlook on how to better use DL to improve the reliability and efficiency of PR. Furthermore, we present a live-updating resource ( https://github.com/kqwang/phase-recovery ) for readers to learn more about PR.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Li Song
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chutian Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Zhenbo Ren
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Guangyuan Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiazhen Dou
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jianglei Di
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - George Barbastathis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianlin Zhao
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Castaneda R, Trujillo C, Doblas A. In-focus quantitative phase imaging from defocused off-axis holograms: synergistic reconstruction framework. OPTICS LETTERS 2023; 48:6244-6247. [PMID: 38039237 DOI: 10.1364/ol.506400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Digital holographic microscopy (DHM) enables the three-dimensional (3D) reconstruction of quantitative phase distributions from a defocused hologram. Traditional computational algorithms follow a sequential approach in which one first reconstructs the complex amplitude distribution and later applies focusing algorithms to provide an in-focus phase map. In this work, we have developed a synergistic computational framework to compensate for the linear tilt introduced in off-axis DHM systems and autofocus the defocused holograms by minimizing a cost function, providing in-focus reconstructed phase images without phase distortions. The proposed computational tool has been validated in defocused holograms of human red blood cells and three-dimensional images of dynamic sperm cells.
Collapse
|
9
|
Park J, Bai B, Ryu D, Liu T, Lee C, Luo Y, Lee MJ, Huang L, Shin J, Zhang Y, Ryu D, Li Y, Kim G, Min HS, Ozcan A, Park Y. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. Nat Methods 2023; 20:1645-1660. [PMID: 37872244 DOI: 10.1038/s41592-023-02041-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and label-free investigation of the physiology and pathology of biological systems. This review presents the principles of various two-dimensional and three-dimensional label-free phase imaging techniques that exploit refractive index as an intrinsic optical imaging contrast. In particular, we discuss artificial intelligence-based analysis methodologies for biomedical studies including image enhancement, segmentation of cellular or subcellular structures, classification of types of biological samples and image translation to furnish subcellular and histochemical information from label-free phase images. We also discuss the advantages and challenges of artificial intelligence-enabled quantitative phase imaging analyses, summarize recent notable applications in the life sciences, and cover the potential of this field for basic and industrial research in the life sciences.
Collapse
Affiliation(s)
- Juyeon Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - DongHun Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chungha Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mahn Jae Lee
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeongwon Shin
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | | | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
- Tomocube, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Pirone D, Montella A, Sirico D, Mugnano M, Del Giudice D, Kurelac I, Tirelli M, Iolascon A, Bianco V, Memmolo P, Capasso M, Miccio L, Ferraro P. Phenotyping neuroblastoma cells through intelligent scrutiny of stain-free biomarkers in holographic flow cytometry. APL Bioeng 2023; 7:036118. [PMID: 37753527 PMCID: PMC10519746 DOI: 10.1063/5.0159399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
To efficiently tackle certain tumor types, finding new biomarkers for rapid and complete phenotyping of cancer cells is highly demanded. This is especially the case for the most common pediatric solid tumor of the sympathetic nervous system, namely, neuroblastoma (NB). Liquid biopsy is in principle a very promising tool for this purpose, but usually enrichment and isolation of circulating tumor cells in such patients remain difficult due to the unavailability of universal NB cell-specific surface markers. Here, we show that rapid screening and phenotyping of NB cells through stain-free biomarkers supported by artificial intelligence is a viable route for liquid biopsy. We demonstrate the concept through a flow cytometry based on label-free holographic quantitative phase-contrast microscopy empowered by machine learning. In detail, we exploit a hierarchical decision scheme where at first level NB cells are classified from monocytes with 97.9% accuracy. Then we demonstrate that different phenotypes are discriminated within NB class. Indeed, for each cell classified as NB its belonging to one of four NB sub-populations (i.e., CHP212, SKNBE2, SHSY5Y, and SKNSH) is evaluated thus achieving accuracy in the range 73.6%-89.1%. The achieved results solve the realistic problem related to the identification circulating tumor cell, i.e., the possibility to recognize and detect tumor cells morphologically similar to blood cells, which is the core issue in liquid biopsy based on stain-free microscopy. The presented approach operates at lab-on-chip scale and emulates real-world scenarios, thus representing a future route for liquid biopsy by exploiting intelligent biomedical imaging.
Collapse
Affiliation(s)
| | | | - Daniele Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | | | | | | | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Mario Capasso
- Authors to whom correspondence should be addressed: and
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
11
|
Gao Z, Li Y. Enhancing single-cell biology through advanced AI-powered microfluidics. BIOMICROFLUIDICS 2023; 17:051301. [PMID: 37799809 PMCID: PMC10550334 DOI: 10.1063/5.0170050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Microfluidic technology has largely benefited both fundamental biological research and translational clinical diagnosis with its advantages in high-throughput, single-cell resolution, high integrity, and wide-accessibility. Despite the merits we obtained from microfluidics in the last two decades, the current requirement of intelligence in biomedicine urges the microfluidic technology to process biological big data more efficiently and intelligently. Thus, the current readout technology based on the direct detection of the signals in either optics or electrics was not able to meet the requirement. The implementation of artificial intelligence (AI) in microfluidic technology matches up with the large-scale data usually obtained in the high-throughput assays of microfluidics. At the same time, AI is able to process the multimodal datasets obtained from versatile microfluidic devices, including images, videos, electric signals, and sequences. Moreover, AI provides the microfluidic technology with the capability to understand and decipher the obtained datasets rather than simply obtaining, which eventually facilitates fundamental and translational research in many areas, including cell type discovery, cell signaling, single-cell genetics, and diagnosis. In this Perspective, we will highlight the recent advances in employing AI for single-cell biology and present an outlook on the future direction with more advanced AI algorithms.
Collapse
Affiliation(s)
- Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Systems Biology Theme, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Systems Biology Theme, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Wang Z, Bianco V, Maffettone PL, Ferraro P. Holographic flow scanning cytometry overcomes depth of focus limits and smartly adapts to microfluidic speed. LAB ON A CHIP 2023; 23:2316-2326. [PMID: 37074006 DOI: 10.1039/d3lc00063j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Space-time digital holography (STDH) maps holograms in a hybrid space-time domain to achieve extended field of view, resolution enhanced, quantitative phase-contrast microscopy and velocimetry of flowing objects in a label-free modality. In STDH, area sensors can be replaced by compact and faster linear sensor arrays to augment the imaging throughput and to compress data from a microfluidic video sequence into one single hybrid hologram. However, in order to ensure proper imaging, the velocity of the objects in microfluidic channels has to be well-matched to the acquisition frame rate, which is the major constraint of the method. Also, imaging all the flowing samples in focus at the same time, while avoiding hydrodynamic focusing devices, is a highly desirable goal. Here we demonstrate a novel processing pipeline that addresses non-ideal flow conditions and is capable of returning the correct and extended focus phase contrast mapping of an entire microfluidic experiment in a single image. We apply this novel processing strategy to recover phase imaging of flowing HeLa cells in a lab-on-a-chip platform even when severely undersampled due to too fast flow while ensuring that all cells are in focus.
Collapse
Affiliation(s)
- Zhe Wang
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le Tecchio 80, 80125, Napoli, Italy
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le Tecchio 80, 80125, Napoli, Italy
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
13
|
Zhao J, Liu L, Wang T, Wang X, Du X, Hao R, Liu J, Zhang J. Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094339. [PMID: 37177540 PMCID: PMC10181755 DOI: 10.3390/s23094339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Quantitative phase imaging and measurement of surface topography and fluid dynamics for objects, especially for moving objects, is critical in various fields. Although effective, existing synchronous phase-shifting methods may introduce additional phase changes in the light field due to differences in optical paths or need specific optics to implement synchronous phase-shifting, such as the beamsplitter with additional anti-reflective coating and a micro-polarizer array. Therefore, we propose a synchronous phase-shifting method based on the Mach-Zehnder interferometer to tackle these issues in existing methods. The proposed method uses common optics to simultaneously acquire four phase-shifted digital holograms with equal optical paths for object and reference waves. Therefore, it can be used to reconstruct the phase distribution of static and dynamic objects with high precision and high resolution. In the experiment, the theoretical resolution of the proposed system was 1.064 µm while the actual resolution could achieve 1.381 µm, which was confirmed by measuring a phase-only resolution chart. Besides, the dynamic phase imaging of a moving standard object was completed to verify the proposed system's effectiveness. The experimental results show that our proposed method is suitable and promising in dynamic phase imaging and measurement of moving objects using phase-shifting digital holography.
Collapse
Affiliation(s)
- Jiaxi Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianhe Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiangzhou Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaohui Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruqian Hao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanxiu Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
14
|
Pirone D, Montella A, Sirico DG, Mugnano M, Villone MM, Bianco V, Miccio L, Porcelli AM, Kurelac I, Capasso M, Iolascon A, Maffettone PL, Memmolo P, Ferraro P. Label-free liquid biopsy through the identification of tumor cells by machine learning-powered tomographic phase imaging flow cytometry. Sci Rep 2023; 13:6042. [PMID: 37055398 PMCID: PMC10101968 DOI: 10.1038/s41598-023-32110-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Image-based identification of circulating tumor cells in microfluidic cytometry condition is one of the most challenging perspectives in the Liquid Biopsy scenario. Here we show a machine learning-powered tomographic phase imaging flow cytometry system capable to provide high-throughput 3D phase-contrast tomograms of each single cell. In fact, we show that discrimination of tumor cells against white blood cells is potentially achievable with the aid of artificial intelligence in a label-free flow-cyto-tomography method. We propose a hierarchical machine learning decision-maker, working on a set of features calculated from the 3D tomograms of the cells' refractive index. We prove that 3D morphological features are adequately distinctive to identify tumor cells versus the white blood cell background in the first stage and, moreover, in recognizing the tumor type at the second decision step. Proof-of-concept experiments are shown, in which two different tumor cell lines, namely neuroblastoma cancer cells and ovarian cancer cells, are used against monocytes. The reported results allow claiming the identification of tumor cells with a success rate higher than 97% and with an accuracy over 97% in discriminating between the two cancer cell types, thus opening in a near future the route to a new Liquid Biopsy tool for detecting and classifying circulating tumor cells in blood by stain-free method.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Annalaura Montella
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Daniele G Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Martina Mugnano
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Massimiliano M Villone
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Research 'Scienze Della Vita e Tecnologie per La Salute', University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- DIMEC, Department of Medical and Surgical Sciences, Centro di Studio e Ricerca Sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
| | - Mario Capasso
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Achille Iolascon
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Pier Luca Maffettone
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| |
Collapse
|
15
|
Tsai HF, Podder S, Chen PY. Microsystem Advances through Integration with Artificial Intelligence. MICROMACHINES 2023; 14:826. [PMID: 37421059 PMCID: PMC10141994 DOI: 10.3390/mi14040826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/09/2023]
Abstract
Microfluidics is a rapidly growing discipline that involves studying and manipulating fluids at reduced length scale and volume, typically on the scale of micro- or nanoliters. Under the reduced length scale and larger surface-to-volume ratio, advantages of low reagent consumption, faster reaction kinetics, and more compact systems are evident in microfluidics. However, miniaturization of microfluidic chips and systems introduces challenges of stricter tolerances in designing and controlling them for interdisciplinary applications. Recent advances in artificial intelligence (AI) have brought innovation to microfluidics from design, simulation, automation, and optimization to bioanalysis and data analytics. In microfluidics, the Navier-Stokes equations, which are partial differential equations describing viscous fluid motion that in complete form are known to not have a general analytical solution, can be simplified and have fair performance through numerical approximation due to low inertia and laminar flow. Approximation using neural networks trained by rules of physical knowledge introduces a new possibility to predict the physicochemical nature. The combination of microfluidics and automation can produce large amounts of data, where features and patterns that are difficult to discern by a human can be extracted by machine learning. Therefore, integration with AI introduces the potential to revolutionize the microfluidic workflow by enabling the precision control and automation of data analysis. Deployment of smart microfluidics may be tremendously beneficial in various applications in the future, including high-throughput drug discovery, rapid point-of-care-testing (POCT), and personalized medicine. In this review, we summarize key microfluidic advances integrated with AI and discuss the outlook and possibilities of combining AI and microfluidics.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Soumyajit Podder
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Pin-Yuan Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| |
Collapse
|
16
|
Valentino M, Sirico DG, Memmolo P, Miccio L, Bianco V, Ferraro P. Digital holographic approaches to the detection and characterization of microplastics in water environments. APPLIED OPTICS 2023; 62:D104-D118. [PMID: 37132775 DOI: 10.1364/ao.478700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microplastic (MP) pollution is seriously threatening the environmental health of the world, which has accelerated the development of new identification and characterization methods. Digital holography (DH) is one of the emerging tools to detect MPs in a high-throughput flow. Here, we review advances in MP screening by DH. We examine the problem from both the hardware and software viewpoints. Automatic analysis based on smart DH processing is reported by highlighting the role played by artificial intelligence for classification and regression tasks. In this framework, the continuous development and availability in recent years of field-portable holographic flow cytometers for water monitoring also is discussed.
Collapse
|
17
|
Liang F, Zhu J, Chai H, Feng Y, Zhao P, Liu S, Yang Y, Lin L, Cao L, Wang W. Non-Invasive and Minute-Frequency 3D Tomographic Imaging Enabling Long-Term Spatiotemporal Observation of Single Cell Fate. SMALL METHODS 2023:e2201492. [PMID: 36950762 DOI: 10.1002/smtd.202201492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Non-invasive and rapid imaging technique at subcellular resolution is significantly important for multiple biological applications such as cell fate study. Label-free refractive-index (RI)-based 3D tomographic imaging constitutes an excellent candidate for 3D imaging of cellular structures, but its full potential in long-term spatiotemporal cell fate observation is locked due to the lack of an efficient integrated system. Here, a long-term 3D RI imaging system incorporating a cutting-edge white light diffraction phase microscopy module with spatiotemporal stability, and an acoustofluidic device to roll and culture single cells in a customized live cell culture chamber is reported. Using this system, 3D RI imaging experiments are conducted for 250 cells and demonstrate efficient cell identification with high accuracy. Importantly, long-term and frequency-on-demand 3D RI imaging of K562 and MCF-7 cancer cells reveal different characteristics during normal cell growth, drug-induced cell apoptosis, and necrosis of drug-treated cells. Overall, it is believed that the proposed 3D tomographic imaging technique opens up a new avenue for visualizing intracellular structures and will find many applications such as disease diagnosis and nanomedicine.
Collapse
Affiliation(s)
- Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Běhal J, Pirone D, Sirico D, Bianco V, Mugnano M, Del Giudice D, Cavina B, Kurelac I, Memmolo P, Miccio L, Ferraro P. On monocytes and lymphocytes biolens clustering by in flow holographic microscopy. Cytometry A 2023; 103:251-259. [PMID: 36028475 DOI: 10.1002/cyto.a.24685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Live cells act as biological lenses and can be employed as real-world optical components in bio-hybrid systems. Imaging at nanoscale, optical tweezers, lithography and also photonic waveguiding are some of the already proven functionalities, boosted by the advantage that cells are fully biocompatible for intra-body applications. So far, various cell types have been studied for this purpose, such as red blood cells, bacterial cells, stem cells and yeast cells. White Blood Cells (WBCs) play a very important role in the regulation of the human body activities and are usually monitored for assessing its health. WBCs can be considered bio-lenses but, to the best of our knowledge, characterization of their optical properties have not been investigated yet. Here, we report for the first time an accurate study of two model classes of WBCs (i.e., monocytes and lymphocytes) by means of a digital holographic microscope coupled with a microfluidic system, assuming WBCs bio-lens characteristics. Thus, quantitative phase maps for many WBCs have been retrieved in flow-cytometry (FC) by achieving a significant statistical analysis to prove the enhancement in differentiation among sphere-like bio-lenses according to their sizes (i.e., diameter d) exploiting intensity parameters of the modulated light in proximity of the cell optical axis. We show that the measure of the low intensity area (S: I z < I th z ) in a fixed plane, is a feasible parameter for cell clustering, while achieving robustness against experimental misalignments and allowing to adjust the measurement sensitivity in post-processing. 2D scatterplots of the identified parameters (d-S) show better differentiation respect to the 1D case. The results show that the optical focusing properties of WBCs allow the clustering of the two populations by means of a mere morphological analysis, thus leading to the new concept of cell-optical-fingerprint avoiding fluorescent dyes. This perspective can open new routes in biomedical sciences, such as the chance to find optical-biomarkers at single cell level for label-free diagnosis.
Collapse
Affiliation(s)
- Jaromír Běhal
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
- Department of Optics, Palacký University, Olomouc, Czech Republic
| | - Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
- DIETI, Department of Electrical Engineering and Information Technologies, University of Naples "Federico II", Naples, Italy
| | - Daniele Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
- Department of Chemical, Materials and Production Engineering of the University of Naples Federico II, Naples, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
- Department of Mathematics and Physics, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Naples, Italy
| |
Collapse
|
19
|
Pirone D, Lim J, Merola F, Miccio L, Mugnano M, Bianco V, Cimmino F, Visconte F, Montella A, Capasso M, Iolascon A, Memmolo P, Psaltis D, Ferraro P. Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry. NATURE PHOTONICS 2022; 16:851-859. [PMID: 36451849 PMCID: PMC7613862 DOI: 10.1038/s41566-022-01096-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/03/2022] [Indexed: 05/12/2023]
Abstract
Quantitative Phase Imaging (QPI) has gained popularity in bioimaging because it can avoid the need for cell staining, which in some cases is difficult or impossible. However, as a result, QPI does not provide labelling of various specific intracellular structures. Here we show a novel computational segmentation method based on statistical inference that makes it possible for QPI techniques to identify the cell nucleus. We demonstrate the approach with refractive index tomograms of stain-free cells reconstructed through the tomographic phase microscopy in flow cytometry mode. In particular, by means of numerical simulations and two cancer cell lines, we demonstrate that the nucleus can be accurately distinguished within the stain-free tomograms. We show that our experimental results are consistent with confocal fluorescence microscopy (FM) data and microfluidic cytofluorimeter outputs. This is a significant step towards extracting specific three-dimensional intracellular structures directly from the phase-contrast data in a typical flow cytometry configuration.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- DIETI, Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, Via Claudio 21, 80125 Napoli, Italy
| | - Joowon Lim
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Francesco Merola
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Flora Cimmino
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Feliciano Visconte
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Annalaura Montella
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Mario Capasso
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Achille Iolascon
- CEINGE - Advanced Biotechnologies, Via Gaetano Salvatore 486, 80131 Napoli, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Demetri Psaltis
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Optics Laboratory, CH-1015 Lausanne, Switzerland
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
20
|
Pirone D, Sirico DG, Mugnano M, Del Giudice D, Kurelac I, Cavina B, Memmolo P, Miccio L, Ferraro P. Finding intracellular lipid droplets from the single-cell biolens' signature in a holographic flow-cytometry assay. BIOMEDICAL OPTICS EXPRESS 2022; 13:5585-5598. [PMID: 36733743 PMCID: PMC9872869 DOI: 10.1364/boe.460204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 05/08/2023]
Abstract
In recent years, intracellular LDs have been discovered to play an important role in several pathologies. Therefore, detection of LDs would provide an in-demand diagnostic tool if coupled with flow-cytometry to give significant statistical analysis and especially if the diagnosis is made in full non-invasive mode. Here we combine the experimental results of in-flow tomographic phase microscopy with a suited numerical simulation to demonstrate that intracellular LDs can be easily detected through a label-free approach based on the direct analysis of the 2D quantitative phase maps recorded by a holographic flow cytometer. In fact, we demonstrate that the presence of LDs affects the optical focusing lensing features of the embracing cell, which can be considered a biological lens. The research was conducted on white blood cells (i.e., lymphocytes and monocytes) and ovarian cancer cells. Results show that the biolens properties of cells can be a rapid biomarker that aids in boosting the diagnosis of LDs-related pathologies by means of the holographic flow-cytometry assay for fast, non-destructive, and high-throughput screening of statistically significant number of cells.
Collapse
Affiliation(s)
- Daniele Pirone
- Department of Electrical Engineering and Information Technologies, University of Naples "Federico II", via Claudio 21, 80125 Napoli, Italy
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- contributed equally
| | - Daniele G Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- DICMaPI, Department of Chemical, Materials and Production Engineering, University of Naples Federico II", Piazzale Tecchio 80, 80125 Napoli, Italy
- contributed equally
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca (CSR) sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca (CSR) sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
21
|
Běhal J, Borrelli F, Mugnano M, Bianco V, Capozzoli A, Curcio C, Liseno A, Miccio L, Memmolo P, Ferraro P. Developing a Reliable Holographic Flow Cyto-Tomography Apparatus by Optimizing the Experimental Layout and Computational Processing. Cells 2022; 11:2591. [PMID: 36010667 PMCID: PMC9406712 DOI: 10.3390/cells11162591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Digital Holographic Tomography (DHT) has recently been established as a means of retrieving the 3D refractive index mapping of single cells. To make DHT a viable system, it is necessary to develop a reliable and robust holographic apparatus in order that such technology can be utilized outside of specialized optics laboratories and operated in the in-flow modality. In this paper, we propose a quasi-common-path lateral-shearing holographic optical set-up to be used, for the first time, for DHT in a flow-cytometer modality. The proposed solution is able to withstand environmental vibrations that can severely affect the interference process. Furthermore, we have scaled down the system while ensuring that a full 360° rotation of the cells occurs in the field-of-view, in order to retrieve 3D phase-contrast tomograms of single cells flowing along a microfluidic channel. This was achieved by setting the camera sensor at 45° with respect to the microfluidic direction. Additional optimizations were made to the computational elements to ensure the reliable retrieval of 3D refractive index distributions by demonstrating an effective method of tomographic reconstruction, based on high-order total variation. The results were first demonstrated using realistic 3D numerical phantom cells to assess the performance of the proposed high-order total variation method in comparison with the gold-standard algorithm for tomographic reconstructions: namely, filtered back projection. Then, the proposed DHT system and the processing pipeline were experimentally validated for monocytes and mouse embryonic fibroblast NIH-3T3 cells lines. Moreover, the repeatability of these tomographic measurements was also investigated by recording the same cell multiple times and quantifying the ability to provide reliable and comparable tomographic reconstructions, as confirmed by a correlation coefficient greater than 95%. The reported results represent various steps forward in several key aspects of in-flow DHT, thus paving the way for its use in real-world applications.
Collapse
Affiliation(s)
- Jaromír Běhal
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Francesca Borrelli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Martina Mugnano
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Amedeo Capozzoli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Claudio Curcio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Angelo Liseno
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Pasquale Memmolo
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| |
Collapse
|
22
|
Chen H, Huang L, Liu T, Ozcan A. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. LIGHT, SCIENCE & APPLICATIONS 2022; 11:254. [PMID: 35970839 PMCID: PMC9378708 DOI: 10.1038/s41377-022-00949-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 05/25/2023]
Abstract
Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging. However, the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN exhibits superior generalization to new types of samples, while also being much faster in its image inference speed, completing the hologram reconstruction task in ~0.04 s per 1 mm2 of the sample area. We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate, salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.
Collapse
Affiliation(s)
- Hanlong Chen
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Efficient Computer-Generated Holography Based on Mixed Linear Convolutional Neural Networks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Imaging based on computer-generated holography using traditional methods has the problems of poor quality and long calculation cycles. However, recently, the development of deep learning has provided new ideas for this problem. Here, an efficient computer-generated holography (ECGH) method is proposed for computational holographic imaging. This method can be used for computational holographic imaging based on mixed linear convolutional neural networks (MLCNN). By introducing fully connected layers in the network, the suggested design is more powerful and efficient at information mining and information exchange. Using the ECGH, the pure phase image required can be obtained after calculating the custom light field. Compared with traditional computed holography based on deep learning, the method used here can reduce the number of network parameters needed for network training by about two-thirds while obtaining a high-quality image in the reconstruction, and the network structure has the potential to solve various image-reconstruction problems.
Collapse
|