1
|
Burikov SA, Sarmanova OE, Fedyanina AA, Plastinin IV, Dolenko TA. A step towards versatile temperature luminescent nanosensor: Combination of luminescent and time-resolved spectroscopy of NaYF 4:Yb 3+/Tm 3+ nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125902. [PMID: 39986250 DOI: 10.1016/j.saa.2025.125902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
The paper proposes a novel approach to measuring the local temperature of a medium using nanoparticles NaYF4:Yb3+/Tm3+ with up-conversion luminescence. The developed method combines using temperature dependences of the luminescence intensity ratio of the bands in the region of 450 nm and 475 nm and the mass center position of the luminescence decay curve for the band in the region of 800 nm. The new approach provides not only high precision in determining the local temperature, but also the versatility of the NaYF4:Yb3+/Tm3+ thermosensor: it can be used for measuring temperature in any biological environment with a precision of up to 0.5 °C.
Collapse
Affiliation(s)
- Sergey A Burikov
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia.
| | - Olga E Sarmanova
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| | - Anna A Fedyanina
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| | - Ivan V Plastinin
- Skobeltsyn Institute of Nuclear Physics, Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| | - Tatiana A Dolenko
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| |
Collapse
|
2
|
Puccini A, Liu N, Hemmer E. Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges. NANOSCALE 2024; 16:10975-10993. [PMID: 38607258 DOI: 10.1039/d4nr00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Being first proposed as a method to overcome limitations associated with conventional contact thermometers, luminescence thermometry has been extensively studied over the past two decades as a sensitive and fast approach to remote and minimally invasive thermal sensing. Herein, lanthanide (Ln)-doped nanoparticles (Ln-NPs) have been identified as particularly promising candidates, given their outstanding optical properties. Known primarily for their upconversion emission, Ln-NPs have also been recognized for their ability to be excited with and emit in the near-infrared (NIR) regions matching the NIR transparency windows. This sparked the emergence of the development of NIR-NIR Ln-NPs for a wide range of temperature-sensing applications. The shift to longer excitation and emission wavelengths resulted in increased efforts being put into developing nanothermometers for biomedical applications, however most research is still preclinical. This mini-review outlines and addresses the challenges that limit the reliability and implementation of luminescent nanothermometers to real-life applications. Through a critical look into the recent developments from the past 4 years, we highlight attempts to overcome some of the limitations associated with excitation wavelength, thermal sensitivity, calibration, as well as light-matter interactions. Strategies range from use of longer excitation wavelengths, brighter emitters through strategic core/multi-shell architectures, exploitation of host phonons, and a shift from double- to single-band ratiometric as well as lifetime-based approaches to innovative methods based on computation and machine learning. To conclude, we offer a perspective on remaining gaps and where efforts should be focused towards more robust nanothermometers allowing a shift to real-life, e.g., in vivo, applications.
Collapse
Affiliation(s)
- Abigale Puccini
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Altowyan AS, Coban MB, Kaynar UH, Hakami J, Ayvacikli M, Hiziroglu A, Can N. Temperature-dependent photoluminescence of novel Eu 3+, Tb 3+, and Dy 3+ doped LaCa 4O(BO 3) 3: Insights at low and room temperatures. Appl Radiat Isot 2024; 208:111308. [PMID: 38555847 DOI: 10.1016/j.apradiso.2024.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
This study explores the structural and optical qualities of LaCa4O(BO3)3 (LACOB) phosphors doped with Eu3+, Dy3+, and Tb3+ using a microwave-assisted sol-gel technique. It uncovers oxygen-related luminescence defects in LACOB, highlighting emission peaks at 489 and 585 nm for Dy3+, a distinct sharp peak at 611 nm for Eu3+ in the red spectrum, and a notable green emission for Tb3+ due to specific transitions. The photoluminescence (PL) analysis indicates that luminescence is optimized through precise doping, leveraging dipole interactions, and localized resonant energy transfer, which are influenced by dopant concentration and spatial configuration. Temperature studies show emission intensity variations, particularly noticeable below 100 K for Tb3+ doped samples, demonstrating the nuanced balance between thermal quenching and luminescence efficiency. This temperature dependency, alongside the identified optimal doping conditions, underscores the potential of these materials for advanced photonic applications, offering insights into their thermal behavior and emission mechanisms under different conditions.
Collapse
Affiliation(s)
- Abeer S Altowyan
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Kingdom of Saudi Arabia
| | - M B Coban
- Balikesir University, Faculty of Arts and Sciences, Department of Physics, Balikesir, Turkiye
| | - U H Kaynar
- Bakırcay University, Faculty of Engineering and Architecture, Department of Fundamental Sciences, Menemen, Izmir, Turkiye; Bakırçay University, Biomedical Technologies Design Application and Research Center, Menemen, Izmir, Turkiye
| | - Jabir Hakami
- Jazan University, College of Science, Department of Physical Sciences, Physics Division, P.O. Box 114, 45142, Jazan, Kingdom of Saudi Arabia
| | - M Ayvacikli
- Manisa Celal Bayar University, Hasan Ferdi Turgutlu Technology Faculty, Mechatronics Engineering, Turgutlu-Manisa, Turkiye
| | - A Hiziroglu
- Department of Management Information Systems, Izmir Bakirçay University, Izmir, 35665, Turkiye
| | - N Can
- Jazan University, College of Science, Department of Physical Sciences, Physics Division, P.O. Box 114, 45142, Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Li SJ, Li F, Kong N, Liu JR, Zhu X. Near Infrared Emissive Lanthanide Luminescence Nanoparticle Used in Early Diagnosis and Brain Temperature Detection for Ischemic Stroke. Adv Healthc Mater 2023; 12:e2302276. [PMID: 37717206 DOI: 10.1002/adhm.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Indexed: 09/18/2023]
Abstract
Ischemic stroke (IS) is one of the most dangerous medical conditions resulting in high mortality and morbidity. The increased brain temperature after IS is closely related to prognosis, making it highly significant for the early diagnosis and the progression evaluation of IS. Herein, a temperature-responsive near infrared (NIR) emissive lanthanide luminescence nanoparticle is developed for the early diagnosis and brain temperature detection of IS. After intravenous injection, the nanoparticles can pass through the damaged blood-brain barrier of the ischemic region, allowing the extravasation and enrichment of nanoparticles into the ischemic brain tissue. The NIR luminescence signals of the nanoparticles are used not only to judge the location and severity of the cerebral ischemic injury but also to report the brain temperature variation in the ischemic area through a visualized way. The results show that the designed nanoparticles can be used for the early diagnosis of ischemic stroke and minimally invasive temperature detection of cerebral ischemic tissues in transient middle cerebral artery occlusion mice model, which is expected to make the clinical diagnosis of ischemic stroke more rapid and convenient, more accurately evaluate the state of brain injury in stroke patients and also guide stroke hypothermia treatment.
Collapse
Affiliation(s)
- Shen-Jie Li
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Huangpu District, Shanghai, 200011, China
| | - Fang Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jian-Ren Liu
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Huangpu District, Shanghai, 200011, China
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| |
Collapse
|
5
|
Hamraoui K, Torres-Vera VA, Zabala Gutierrez I, Casillas-Rubio A, Alqudwa Fattouh M, Benayas A, Marin R, Natile MM, Manso Silvan M, Rubio-Zuazo J, Jaque D, Melle S, Calderón OG, Rubio-Retama J. Exploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390496 DOI: 10.1021/acsami.3c04125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Rare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.
Collapse
Affiliation(s)
- Khouloud Hamraoui
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Vivian Andrea Torres-Vera
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Irene Zabala Gutierrez
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | | | - Mohammed Alqudwa Fattouh
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Antonio Benayas
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Riccardo Marin
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Maria Natile
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Padua, Italy
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Padua, Italy
| | - Miguel Manso Silvan
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Rubio-Zuazo
- Spanish CRG BM25-SpLine Beamline at the ESRF, 38043 Grenoble, France
- Instituto de Ciencias de los Materiales de Madrid-Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| |
Collapse
|
6
|
Pudovkin M, Oleynikova E, Kiiamov A, Cherosov M, Gafurov M. Nd 3+, Yb 3+:YF 3 Optical Temperature Nanosensors Operating in the Biological Windows. MATERIALS (BASEL, SWITZERLAND) 2022; 16:39. [PMID: 36614383 PMCID: PMC9821644 DOI: 10.3390/ma16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This work is devoted to the study of thermometric performances of Nd3+ (0.1 or 0.5 mol.%), Yb3+ (X%):YF3 nanoparticles. Temperature sensitivity of spectral shape is related to the phonon-assisted nature of energy transfer (PAET) between Nd3+ and Yb3+). However, in the case of single-doped Nd3+ (0.1 or 0.5 mol.%):YF3 nanoparticles, luminescence decay time (LDT) of 4F3/2 level of Nd3+ in Nd3+ (0.5 mol.%):YF3 decreases with the temperature decrease. In turn, luminescence decay time in Nd3+ (0.1 mol.%):YF3 sample remains constant. It was proposed, that at 0.5 mol.% the cross-relaxation (CR) between Nd3+ ions takes place in contradistinction from 0.1 mol.% Nd3+ concentration. The decrease of LDT with temperature is explained by the decrease of distances between Nd3+ with temperature that leads to the increase of cross-relaxation efficiency. It was suggested, that the presence of both CR and PAET processes in the studied system (Nd3+ (0.5 mol.%), Yb3+ (X%):YF3) nanoparticles provides higher temperature sensitivity compared to the systems having one process (Nd3+ (0.1 mol.%), Yb3+ (X%):YF3). The experimental results confirmed this suggestion. The maximum relative temperature sensitivity was 0.9%·K-1 at 80 K.
Collapse
|
7
|
Maciejewska K, Marciniak L. Influence of the Synthesis Conditions on the Morphology and Thermometric Properties of the Lifetime-Based Luminescent Thermometers in YPO 4:Yb 3+,Nd 3+ Nanocrystals. ACS OMEGA 2022; 7:31466-31473. [PMID: 36092587 PMCID: PMC9453944 DOI: 10.1021/acsomega.2c03990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
An increase in the accuracy of remote temperature readout using luminescent thermometry is determined, among other things, by the relative sensitivity of the thermometer. Therefore, to increase the sensitivity, intensive work is carried out to optimize the host material composition and select the luminescent ions accordingly. However, the role of nanocrystal morphology in thermometric performance is often neglected. This paper presents a systematic study determining the role of synthesis parameters of the solvothermal method on the morphology of YPO4:Yb3+,Nd3+ nanocrystals and their effect on the lifetime of Yb3+ ion-based luminescent thermometer performance. It was shown that by changing the RE3+:(PO4)3- ratio and the concentration of Nd3+ ions, the size, shape, and aggregation level of the nanocrystals can be modified changing the thermometric parameters of the luminescent thermometer. The highest relative sensitivity was obtained for the low RE3+:(PO4)3- ratio and 1% Nd3+ ion concentration.
Collapse
Affiliation(s)
- Kamila Maciejewska
- Institute of Low Temperature
and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Lukasz Marciniak
- Institute of Low Temperature
and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
8
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Kong N, Hu Q, Wu Y, Zhu X. Lanthanide Luminescent Nanocomposite for Non‐Invasive Temperature Monitoring in Vivo. Chemistry 2022; 28:e202104237. [DOI: 10.1002/chem.202104237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Na Kong
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Qian Hu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Yukai Wu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| |
Collapse
|
10
|
Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, Liang J. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat Commun 2021; 12:6401. [PMID: 34737314 PMCID: PMC8568918 DOI: 10.1038/s41467-021-26701-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Photoluminescence lifetime imaging of upconverting nanoparticles is increasingly featured in recent progress in optical thermometry. Despite remarkable advances in photoluminescent temperature indicators, existing optical instruments lack the ability of wide-field photoluminescence lifetime imaging in real time, thus falling short in dynamic temperature mapping. Here, we report video-rate upconversion temperature sensing in wide field using single-shot photoluminescence lifetime imaging thermometry (SPLIT). Developed from a compressed-sensing ultrahigh-speed imaging paradigm, SPLIT first records wide-field luminescence intensity decay compressively in two views in a single exposure. Then, an algorithm, built upon the plug-and-play alternating direction method of multipliers, is used to reconstruct the video, from which the extracted lifetime distribution is converted to a temperature map. Using the core/shell NaGdF4:Er3+,Yb3+/NaGdF4 upconverting nanoparticles as the lifetime-based temperature indicators, we apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin scattering medium. SPLIT also enables video-rate temperature mapping of a moving biological sample at single-cell resolution.
Collapse
Affiliation(s)
- Xianglei Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Artiom Skripka
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Cheng Jiang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Jingdan Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
| |
Collapse
|