1
|
Tomoda M, Matsuo H, Matsuda O, Li Voti R, Wright OB. Tomographic reconstruction of picosecond acoustic strain pulses using automated angle-scan probing with visible light. PHOTOACOUSTICS 2023; 34:100567. [PMID: 38027528 PMCID: PMC10665958 DOI: 10.1016/j.pacs.2023.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
By means of an ultrafast optical technique, picosecond acoustic strain pulses in a transparent medium are tomographically visualized at GHz frequencies. The strain distribution in BK7 glass is reconstructed from time-domain reflectivity changes of 415-nm probe light as a function of the optical incidence angle with 1 ps temporal and 120 nm spatial resolutions, enabled by automated angle scanning. The latter resolution is achieved owing to the commensurate acoustic wavelength. Applications include imaging strain, carrier and temperature distributions on ultrashort timescales.
Collapse
Affiliation(s)
- Motonobu Tomoda
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Hiroyuki Matsuo
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Osamu Matsuda
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Roberto Li Voti
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, Roma, I-00161, Italy
| | - Oliver B. Wright
- Hokkaido University, Sapporo, 060-0808, Japan
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Matassa R, Gatti M, Crociati M, Brunelli R, Battaglione E, Papi M, De Spirito M, Nottola SA, Familiari G. Self-assembly of glycoprotein nanostructured filaments for modulating extracellular networks at long range. NANOSCALE 2023; 15:17972-17986. [PMID: 37905731 DOI: 10.1039/d3nr02644b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The intriguing capability of branched glycoprotein filaments to change their hierarchical organization, mediated by external biophysical stimuli, continues to expand understanding of self-assembling strategies that can dynamically rearrange networks at long range. Previous research has explored the corresponding biological, physiological and genetic mechanisms, focusing on protein assemblies within a limited range of nanometric units. Using direct microscopy bio-imaging, we have determined the morpho-structural changes of self-assembled filament networks of the zona pellucida, revealing controlled levels of structured organizations to join distinct evolved stages of the oocyte (Immature, Mature, and Fertilized). This natural soft network reorganizes its corresponding hierarchical network to generate symmetric, asymmetric, and ultimately a state with the lowest asymmetry of the outer surface roughness, and internal pores reversibly changed from elliptical to circular configurations at the corresponding stages. These elusive morpho-structural changes are regulated by the nanostructured polymorphisms of the branched filaments by self-extension/-contraction/-bending processes, modulated by determinate theoretical angles among repetitive filament units. Controlling the nanoscale self-assembling properties by delivering a minimum number of activation bio-signals may be triggered by these specific nanostructured polymorphic organizations. Finally, this research aims to guide this soft biomaterial into a desired state to protect oocytes, eggs, and embryos during development, to favour/prevent the fertilization/polyspermy processes and eventually to impact interactions with bacteria/virus at multiscale levels.
Collapse
Affiliation(s)
- Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy.
| | - Marta Gatti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy.
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia, 06126, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Roberto Brunelli
- Department of Gynecological-Obstetric and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ezio Battaglione
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy.
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy.
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy.
| |
Collapse
|
3
|
Cerra S, Carlini L, Salamone TA, Hajareh Haghighi F, Mercurio M, Pennacchi B, Sappino C, Battocchio C, Nottola S, Matassa R, Fratoddi I. Noble Metal Nanoparticles Networks Stabilized by Rod‐Like Organometallic Bifunctional Thiols. ChemistrySelect 2023. [DOI: 10.1002/slct.202300874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Sara Cerra
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Laura Carlini
- Department of Sciences Roma Tre University Via della Vasca Navale 79 00146 Rome Italy
| | - Tommaso A. Salamone
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | | | - Martina Mercurio
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Beatrice Pennacchi
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Carla Sappino
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Chiara Battocchio
- Department of Sciences Roma Tre University Via della Vasca Navale 79 00146 Rome Italy
| | - Stefania Nottola
- Department of Anatomical Histological Forensic and Orthopaedic Sciences Section of Human Anatomy Sapienza University of Rome Via A. Borelli 50 00161 Rome Italy
| | - Roberto Matassa
- Department of Anatomical Histological Forensic and Orthopaedic Sciences Section of Human Anatomy Sapienza University of Rome Via A. Borelli 50 00161 Rome Italy
| | - Ilaria Fratoddi
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| |
Collapse
|
4
|
Domes and semi-capsules as model systems for infrared microspectroscopy of biological cells. Sci Rep 2023; 13:3165. [PMID: 36823297 PMCID: PMC9950083 DOI: 10.1038/s41598-023-30130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
It is well known that infrared microscopy of micrometer sized samples suffers from strong scattering distortions, attributed to Mie scattering. The state-of-the-art preprocessing technique for modelling and removing Mie scattering features from infrared absorbance spectra of biological samples is built on a meta model for perfect spheres. However, non-spherical cell shapes are the norm rather than the exception, and it is therefore highly relevant to evaluate the validity of this preprocessing technique for deformed spherical systems. Addressing these cases, we investigate both numerically and experimentally the absorbance spectra of 3D-printed individual domes, rows of up to five domes, two domes with varying distance, and semi-capsules of varying lengths as model systems of deformed individual cells and small cell clusters. We find that coupling effects between individual domes are small, corroborating previous related literature results for spheres. Further, we point out and illustrate with examples that, while optical reciprocity guarantees the same extinction efficiency for top vs. bottom illumination, a scatterer's internal field may be vastly different in these two situations. Finally, we demonstrate that the ME-EMSC model for preprocessing infrared spectra from spherical biological systems is valid also for deformed spherical systems.
Collapse
|
5
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
6
|
Krivoshein PK, Volkov DS, Rogova OB, Proskurnin MA. FTIR Photoacoustic and ATR Spectroscopies of Soils with Aggregate Size Fractionation by Dry Sieving. ACS OMEGA 2022; 7:2177-2197. [PMID: 35071906 PMCID: PMC8771961 DOI: 10.1021/acsomega.1c05702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Granulometric fractionation as a source of additional information on organic-matter and inorganic matrix components of soils using FTIR-photoacoustic spectroscopy (FTIR-PAS) supported by attenuated-total reflection FTIR spectroscopy (ATR-FTIR) for a wide range of aggregate fractions (10-5000 μm) was used to compare the sensitivity, reproducibility, information contents, and representativity of fractionated samples. For chernozem and sod-podzolic soils and different agricultural-use chernozem samples, differences in the composition were found, manifested in normalized spectra of microaggregate fractions, with the range of 10-100 μm bearing the complete information. Most changes are observed in the soil organic matter range (1900-1340 cm-1), although these changes are slight, and in the soil-matrix region (550-300 cm-1). The latter region increases the intensity of bands corresponding to amorphous silica and clay minerals in fine fractions, while the intensity of bands attributed to quartz lattice vibrations decreases. FTIR-PAS spectra do not differ considerably at high interferometer modulation frequencies as the signal-penetration depth is comparable with particle sizes. The soil fractions below 20 μm result in the maximum sensitivity, reproducibility, and signal-to-noise ratio, showing no changes from coarser fractions by the information content and, thus, providing representative samples for analysis. The fractionation shows more differences in the sod-podzolic and chernozem soil fractions than the whole soil spectra. FTIR-PAS provides better sensitivity and reproducibility in the 4000-2000 cm-1 region and ATR-FTIR in the 2000-100 cm-1 region.
Collapse
Affiliation(s)
- Petr K. Krivoshein
- Chemistry
Department, M.V. Lomonosov Moscow State
University, Leninskie
Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Dmitry S. Volkov
- Chemistry
Department, M.V. Lomonosov Moscow State
University, Leninskie
Gory, 1-3, GSP-1, Moscow 119991, Russia
- Department
of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia
| | - Olga B. Rogova
- Department
of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia
| | - Mikhail A. Proskurnin
- Chemistry
Department, M.V. Lomonosov Moscow State
University, Leninskie
Gory, 1-3, GSP-1, Moscow 119991, Russia
| |
Collapse
|
7
|
Benetti G, Banfi F, Cavaliere E, Gavioli L. Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3116. [PMID: 34835879 PMCID: PMC8624309 DOI: 10.3390/nano11113116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Nanoporous ultrathin films, constituted by a slab less than 100 nm thick and a certain void volume fraction provided by nanopores, are emerging as a new class of systems with a wide range of possible applications, including electrochemistry, energy storage, gas sensing and supercapacitors. The film porosity and morphology strongly affect nanoporous films mechanical properties, the knowledge of which is fundamental for designing films for specific applications. To unveil the relationships among the morphology, structure and mechanical response, a comprehensive and non-destructive investigation of a model system was sought. In this review, we examined the paradigmatic case of a nanoporous, granular, metallic ultrathin film with comprehensive bottom-up and top-down approaches, both experimentals and theoreticals. The granular film was made of Ag nanoparticles deposited by gas-phase synthesis, thus providing a solvent-free and ultrapure nanoporous system at room temperature. The results, bearing generality beyond the specific model system, are discussed for several applications specific to the morphological and mechanical properties of the investigated films, including bendable electronics, membrane separation and nanofluidic sensing.
Collapse
Affiliation(s)
- Giulio Benetti
- Medical Physics Unit, Azienda Ospedaliera Universitaria Integrata, P.le Stefani 1, 37126 Verona, Italy;
| | - Francesco Banfi
- FemtoNanoOptics Group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France;
| | - Emanuele Cavaliere
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25121 Brescia, Italy;
| | - Luca Gavioli
- FemtoNanoOptics Group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France;
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25121 Brescia, Italy;
| |
Collapse
|